留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 12
Dec.  2021

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2254
  • HTML全文浏览量:  376
  • PDF下载量:  72
  • 被引次数: 0
Xiang-peng Zhang, Hong-xia Wang, Li-ping Bian, Shao-xiong Zhang, Yong-peng Zhuang, Wei-li Cheng, and Wei Liang, Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1966-1975. https://doi.org/10.1007/s12613-020-2123-z
Cite this article as:
Xiang-peng Zhang, Hong-xia Wang, Li-ping Bian, Shao-xiong Zhang, Yong-peng Zhuang, Wei-li Cheng, and Wei Liang, Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1966-1975. https://doi.org/10.1007/s12613-020-2123-z
引用本文 PDF XML SpringerLink
研究论文

不同温度下多道次等径角挤压Mg–9Al–1Si–1SiC复合材料的组织演变及力学性能 

  • Research Article

    Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures

    + Author Affiliations
    • In this study, Mg–9Al–1Si–1SiC (wt%) composites were processed by multi-pass equal-channel angular pressing (ECAP) at various temperatures, and their microstructure evolution and strengthening mechanism were explored. Results showed that the as-cast microstructure was composed of an α-Mg matrix, discontinuous Mg17Al12 phase, and Chinese script-shaped Mg2Si phase. After solution treatment, almost all of the Mg17Al12 phases were dissolved into the matrix, whereas the Mg2Si phases were not. The subsequent multi-pass ECAP at different temperatures promoted the dynamic recrystallization and uniform distribution of the Mg17Al12 precipitates when compared with the multi-pass ECAP at a constant temperature. A large number of precipitates can effectively improve the nucleation ratio of recrystallization through a particle-stimulated nucleation mechanism. In addition, the SiC nanoparticles were mainly distributed at grain boundaries, which effectively prevented dislocation movement. The excellent comprehensive mechanical properties can be attributed to grain boundary strengthening and Orowan strengthening.

    • loading
    • [1]
      Y.Z. Lü, Q.D. Wang, X.Q. Zeng, W.J. Ding, C.Q. Zhai, and Y.P. Zhu, Effects of rare earths on the microstructure, properties and fracture behavior of Mg–Al alloys, Mater. Sci. Eng. A, 278(2000), No. 1-2, p. 66. doi: 10.1016/S0921-5093(99)00604-8
      [2]
      Y. Liu, W. Li, and Y.Y. Li, Microstructure and mechanical properties of ZE10 magnesium alloy prepared by equal channel angular pressing, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p. 559. doi: 10.1016/S1674-4799(09)60096-0
      [3]
      H. Mirzadeh, Constitutive behaviors of magnesium and Mg–Zn–Zr alloy during hot deformation, Mater. Chem. Phys., 152(2015), p. 123. doi: 10.1016/j.matchemphys.2014.12.023
      [4]
      M. Gupta and W.L.E. Wong, Magnesium-based nanocomposites: Lightweight materials of the future, Mater. Charact., 105(2015), p. 30. doi: 10.1016/j.matchar.2015.04.015
      [5]
      D.L. Yu, D.F. Zhang, J. Sun, Y.X. Luo, J.Y. Xu, H.J. Zhang, and F.S. Pan, Improving mechanical properties of ZM61 magnesium alloy by aging before extrusion, J. Alloys Compd., 690(2017), p. 553. doi: 10.1016/j.jallcom.2016.08.128
      [6]
      W.H. Wang, H.X. Wang, Y.M. Liu, H.H. Nie, and W.L. Cheng, Effect of SiC nanoparticles addition on the microstructures and mechanical properties of ECAPed Mg9Al–1Si alloy, J. Mater. Res., 32(2017), No. 3, p. 615. doi: 10.1557/jmr.2016.514
      [7]
      S.X. Zhang, M. Li, H.X. Wang, W.L. Cheng, W.W. Lei, Y.M. Liu, and W. Liang, Microstructure and tensile properties of ECAPed Mg–9Al–1Si–1SiC composites: The influence of initial microstructures, Materials, 11(2018), No. 1, art. No. 136. doi: 10.3390/ma11010136
      [8]
      K.B. Nie, K.K. Deng, X.J. Wang, W.M. Gan, F.J. Xu, K. Wu, and M.Y. Zheng, Microstructures and mechanical properties of SiCp/AZ91 magnesium matrix nanocomposites processed by multidirectional forging, J. Alloys Compd., 622(2015), p. 1018. doi: 10.1016/j.jallcom.2014.11.045
      [9]
      X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu, W.M. Gan, H.G. Brokmeier, and I.S. Golovin, Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP), Mater. Charact., 121(2016), p. 222. doi: 10.1016/j.matchar.2016.10.003
      [10]
      K.B. Nie, X.J. Wang, X.S. Hu, L. Xu, K. Wu, and M.Y. Zheng, Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5278. doi: 10.1016/j.msea.2011.03.061
      [11]
      K.B. Nie, X.J. Wang, L. Xu, K. Wu, X.S. Hu, and M.Y. Zheng, Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite, Mater. Des., 36(2012), p. 199. doi: 10.1016/j.matdes.2011.11.020
      [12]
      K.B. Nie, X.J. Wang, X.S. Hu, Y.W. Wu, K.K. Deng, K. Wu, and M.Y. Zheng, Effect of multidirectional forging on microstructures and tensile properties of a particulate reinforced magnesium matrix composite, Mater. Sci. Eng. A, 528(2011), No. 24, p. 7133. doi: 10.1016/j.msea.2011.06.016
      [13]
      K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd., 509(2011), No. 35, p. 8664. doi: 10.1016/j.jallcom.2011.06.091
      [14]
      R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), No. 7, p. 881. doi: 10.1016/j.pmatsci.2006.02.003
      [15]
      J. Wei, G.H. Huang, D.D. Yin, K.N. Li, Q.D. Wang, and H. Zhou, Effects of ECAP and annealing treatment on the microstructure and mechanical properties of Mg–1Y (wt. %) binary alloy, Metals, 7(2017), No. 4, art. No. 119. doi: 10.3390/met7040119
      [16]
      M.Y. Zheng, X.G. Qiao, S.W. Xu, K. Wu, S. Kamado, and Y. Kojima, In-situ quasicrystal-reinforced magnesium matrix composite processed by equal channel angular extrusion (ECAE), J. Mater. Sci., 40(2005), No. 9-10, p. 2587. doi: 10.1007/s10853-005-2081-x
      [17]
      J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, and W. Volk, Effect of processing route on texture and cold formability of AZ31 Mg alloy sheets processed by ECAP, Mater. Sci. Eng. A, 669(2016), p. 159. doi: 10.1016/j.msea.2016.05.027
      [18]
      M. Bleckmann, M. Eichhorst, M. Schuch, W. Kreuzer, V.H. Hammond, C. Spiller, L.W. Meyer, and N. Herzig, The influence of selected ECAP-processing routes on the material properties of Magnesium Elektron 675, Mater. Sci. Eng. A, 660(2016), p. 108. doi: 10.1016/j.msea.2016.02.059
      [19]
      H. Liu, H. Huang, X.W. Yang, C. Li, J.L. Yan, J.H. Jiang, and A.B. Ma, Microstructure and mechanical property of a high-strength Mg–10Gd–6Y–1.5Zn–0.5Zr alloy prepared by multi-pass equal channel angular pressing, J. Magnesium Alloys, 5(2017), No. 2, p. 231. doi: 10.1016/j.jma.2017.05.002
      [20]
      H. Liu, Z.J. Cheng, K. Yan, J.L. Yan, J. Bai, J.H. Jiang, and A.B. Ma, Effect of multi-pass equal channel angular pressing on the microstructure and mechanical properties of a heterogeneous Mg88Y8Zn4 alloy, J. Mater. Sci. Technol., 32(2016), No. 12, p. 1274. doi: 10.1016/j.jmst.2016.05.015
      [21]
      Z.Q. Yang, A.B. Ma, H. Liu, D. Song, Y.N. Wu, Y.C. Yuan, J.H. Jiang, and J.P. Sun, Managing strength and ductility in AZ91 magnesium alloy through ECAP combined with prior and post aging treatment, Mater. Charact., 152(2019), p. 213. doi: 10.1016/j.matchar.2019.04.022
      [22]
      W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Mater., 51(2003), No. 11, p. 3293. doi: 10.1016/S1359-6454(03)00161-7
      [23]
      D. Orlov, G. Raab, T.T. Lamark, M. Popov, and Y. Estrin, Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing, Acta Mater., 59(2011), No. 1, p. 375. doi: 10.1016/j.actamat.2010.09.043
      [24]
      Y.C. Lin and X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., 32(2011), No. 4, p. 1733. doi: 10.1016/j.matdes.2010.11.048
      [25]
      Y.C. Yuan, A.B. Ma, X.F. Gou, J.H. Jiang, G. Arhin, D. Song, and H. Liu, Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy, Mater. Sci. Eng. A, 677(2016), p. 125. doi: 10.1016/j.msea.2016.09.037
      [26]
      T. Yuan, J.H. Jiang, A.B. Ma, Y.N. Wu, Y.C. Yuan, and C. Li, Simultaneously improving the strength and ductility of an Al–5.5Mg–1.6Li–0.1Zr alloy via warm multi-pass ECAP, Mater. Charact., 151(2019), p. 530. doi: 10.1016/j.matchar.2019.03.043
      [27]
      J.D. Robson, D.T. Henry, and B. Davis, Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation, Acta Mater., 57(2009), No. 9, p. 2739. doi: 10.1016/j.actamat.2009.02.032
      [28]
      X. Yao, Y.F. Zheng, M.Z. Quadir, C. Kong, J.M. Liang, Y.H. Chen, P. Munroe, and D.L. Zhang, Grain growth and recrystallization behaviors of an ultrafine grained Al–0.6wt%Mg–0.4wt%Si–5vol.%SiC nanocomposite during heat treatment and extrusion, J. Alloys Compd., 745(2018), p. 519. doi: 10.1016/j.jallcom.2018.02.145
      [29]
      Z.W. Wang, M. Song, C. Sun, and Y.H. He, Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1131. doi: 10.1016/j.msea.2010.11.028
      [30]
      M.G. Jiang, H. Yan, and R.S. Chen, Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy, J. Alloys Compd., 650(2015), p. 399. doi: 10.1016/j.jallcom.2015.07.281
      [31]
      Y.F. Chai, B. Jiang, J.F. Song, Q.H. Wang, J.J. He, J. Zhao, G.S. Huang, Z.T. Jiang, and F.S. Pan, Role of Al content on the microstructure, texture and mechanical properties of Mg–3.5Ca based alloys, Mater. Sci. Eng. A, 730(2018), p. 303. doi: 10.1016/j.msea.2018.06.011
      [32]
      Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, and M.X. Liang, Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy, Mater. Sci. Eng. A, 454(2007), p. 274. doi: 10.1016/j.msea.2006.11.047
      [33]
      K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, and K. Wu, Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite, Compos. Part A, 43(2012), No. 8, p. 1280. doi: 10.1016/j.compositesa.2012.03.007
      [34]
      W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature, J. Magnesiun Alloys, 2(2014), No. 4, p. 299. doi: 10.1016/j.jma.2014.11.003

    Catalog


    • /

      返回文章
      返回