留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(6)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  3763
  • HTML全文浏览量:  1015
  • PDF下载量:  81
  • 被引次数: 0
Wei Chen, Shenghua Yin, and I.M.S.K. Ilankoon, Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 59-69. https://doi.org/10.1007/s12613-020-2125-x
Cite this article as:
Wei Chen, Shenghua Yin, and I.M.S.K. Ilankoon, Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 59-69. https://doi.org/10.1007/s12613-020-2125-x
引用本文 PDF XML SpringerLink
研究论文

通气对硫化铜矿生物浸出过程中自由细菌和吸附细菌群落动态的影响研究

  • 通讯作者:

    尹升华    E-mail: csuysh@126.com

文章亮点

  • (1) 系统地研究了通风对硫化铜矿生物浸出的影响规律。
  • (2) 研究了通风对自由细菌和吸附细菌群落动态的影响。
  • (3) 总结并提出了通风能够促进硫化铜矿生物浸出的潜在机理。
  • 生物浸出回收低品位硫化铜矿中的铜金属具有操作简单、低能耗、节约经济等优点,成为了近年来的研究热点。然而低品位硫化铜矿生物浸出效率低是其面临的主要问题之一。本文为了促进生物浸出效率,研究了强制通气条件下的低品位硫化铜矿生物浸出过程中的铜浸出率、细菌群落动态演替等特征。结果表明,适当的通气可提高细菌浓度和铜浸出率。在通气时间为4 h·d−1时,浸矿14 d后的细菌浓度和铜离子浓度最高,分别为7.61×107 个·mL−1和704.9 mg·L−1。实验可得,吸附细菌在浸矿过程的前7 d起着重要作用,而自由细菌则是在第8 d到第14 d占主导地位。这一现象主要是由于浸出过程Fe3+水解形成钝化层所致,抑制了吸附细菌与矿石的接触。同时,通过16S rDNA分析可知,Acidithiobacillus ferrooxidansAcidithiobacillus thiooxidans对低品位硫化铜矿生物浸出过程具有重要影响。

  • Research Article

    Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching

    + Author Affiliations
    • Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency. Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies. The highest bacterial concentration and Cu2+ concentration after 14-d leaching were 7.61 × 107 cells·mL−1 and 704.9 mg·L−1, respectively, at aeration duration of 4 h·d−1. The attached bacteria played a significant role during bioleaching from 1 to 7 d. However, free bacteria dominated the bioleaching processes from 8 to 14 d. This phenomenon was mainly caused by the formation of passivation layer through Fe3+ hydrolysis along with bioleaching, which inhibited the contact between the attached bacteria and ore. Meanwhile, 16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process. The results demonstrate the importance of free and attached bacteria in bioleaching.

    • loading
    • [1]
      C.S. Davis-Belmar, D. Cautivo, C. Demergasso, and G. Rautenbach, Bioleaching of copper secondary sulfide ore in the presence of chloride by means of inoculation with chloride-tolerant microbial culture, Hydrometallurgy, 150(2014), p. 308. doi: 10.1016/j.hydromet.2014.09.013
      [2]
      W. Chen, S.H. Yin, A.X. Wu, L.M. Wang, and X. Chen, Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater, Bioresour. Technol., 297(2020), art. No. 122453. doi: 10.1016/j.biortech.2019.122453
      [3]
      S.H. Yin, W. Chen, J.M. Liu, and Q. Song, Agglomeration experiment of secondary copper sulfide ore, Chin. J. Eng., 41(2019), No. 9, p. 1127.
      [4]
      I.M.S.K. Ilankoon and S.J. Neethling, Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity, Miner. Eng., 86(2016), p. 130. doi: 10.1016/j.mineng.2015.12.010
      [5]
      H.M. Lizama, S.E. Jensen, and A.W. Stradling, Dynamic microbial populations in heap leaching of zinc sulphide ore, Miner. Eng., 25(2012), No. 1, p. 54. doi: 10.1016/j.mineng.2011.10.005
      [6]
      M.A. Fagan, I.E. Ngoma, R.A. Chiume, S. Minnaar, A.J. Sederman, M.L. Johns, and S.T.L. Harrison, MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms, Hydrometallurgy, 150(2014), p. 210. doi: 10.1016/j.hydromet.2014.04.022
      [7]
      M. Latorre, M.P. Cortés, D. Travisany, A. Di Genova, M. Budinich, A. Reyes-Jara, C. Hödar, M. González, P. Parada, R.A. Bobadilla-Fazzini, V. Cambiazo, and A. Maass, The bioleaching potential of a bacterial consortium, Bioresour. Technol., 218(2016), p. 659. doi: 10.1016/j.biortech.2016.07.012
      [8]
      W. Chen, S.H. Yin, Y. Qi, X. Chen, and L.M. Wang, Effect of additives on bioleaching of copper sulfide ores, J. Cent. South Univ. Sci. Technol., 50(2019), No. 7, p. 1507.
      [9]
      C. Richter, H. Kalka, E. Myers, J. Nicolai, and H. Märten, Constraints of bioleaching in in-situ recovery applications, Hydrometallurgy, 178(2018), p. 209. doi: 10.1016/j.hydromet.2018.04.008
      [10]
      C.L. Brierley, Biohydrometallurgical prospects, Hydrometallurgy, 104(2010), No. 3-4, p. 324. doi: 10.1016/j.hydromet.2010.03.021
      [11]
      J.A. Brierley and C.L. Brierley, Present and future commercial applications of biohydrometallurgy, Hydrometallurgy, 59(2001), No. 2-3, p. 233. doi: 10.1016/S0304-386X(00)00162-6
      [12]
      A. Potysz, E.D. van Hullebusch, and J. Kierczak, Perspectives regarding the use of metallurgical slags as secondary metal resources — A review of bioleaching approaches, J. Environ. Manage., 219(2018), p. 138. doi: 10.1016/j.jenvman.2018.04.083
      [13]
      A. Henne, D. Craw, P. Vasconcelos, and G. Southam, Bioleaching of waste material from the Salobo mine, Brazil: Recovery of refractory copper from Cu hosted in silicate minerals, Chem. Geol., 498(2018), p. 72. doi: 10.1016/j.chemgeo.2018.08.029
      [14]
      Y.G. Wang, X.H. Chen, and H.B. Zhou, Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide, Bioresour. Technol., 268(2018), p. 480. doi: 10.1016/j.biortech.2018.08.031
      [15]
      L.X. Sun, X. Zhang, W.S. Tan, and M.L. Zhu, Effect of agitation intensity on the biooxidation process of refractory gold ores by Acidithiobacillus ferrooxidans, Hydrometallurgy, 127-128(2012), p. 99. doi: 10.1016/j.hydromet.2012.07.007
      [16]
      M. Acosta, P. Galleguillos, Y. Ghorbani, P. Tapia, Y. Contador, A. Velásquez, C. Espoz, C. Pinilla, and C. Demergasso, Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation, Hydrometallurgy, 150(2014), p. 281. doi: 10.1016/j.hydromet.2014.09.010
      [17]
      Y. Jia, H.Y. Sun, Q.Y. Tan, H.S. Gao, X.L. Feng, and R.M. Ruan, Linking leach chemistry and microbiology of low-grade copper ore bioleaching at different temperatures, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 271. doi: 10.1007/s12613-018-1570-2
      [18]
      H.L. Yang, S.S. Feng, Y. Xin, and W. Wang, Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp., Bioresour. Technol., 154(2014), p. 185. doi: 10.1016/j.biortech.2013.12.036
      [19]
      S.S. Feng, H.L. Yang, and W. Wang, Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages, Bioresour. Technol., 200(2016), p. 186. doi: 10.1016/j.biortech.2015.09.054
      [20]
      H. Wang, X. Zhang, M.L. Zhu, and W.S. Tan, Effects of dissolved oxygen and carbon dioxide under oxygen-rich conditions on the biooxidation process of refractory gold concentrate and the microbial community, Miner. Eng., 80(2015), p. 37. doi: 10.1016/j.mineng.2015.06.016
      [21]
      B.Q. Yu, J. Kou, Y. Xing, and C.B. Sun, Enhanced extraction of copper from cupriferous biotite by organic intercalation, Hydrometallurgy, 192(2020), art. No. 105286. doi: 10.1016/j.hydromet.2020.105286
      [22]
      A. Caramento, Cultivating backward linkages to Zambia's copper mines: Debating the design of, and obstacles to local content, Extr. Ind. Soc., 7(2020), No. 2, p. 310. doi: 10.1016/j.exis.2019.10.013
      [23]
      P. Mwaanga, M. Silondwa, G. Kasali, and P.M. Banda, Preliminary review of mine air pollution in Zambia, Heliyon, 5(2019), No. 9, art. No. e02485. doi: 10.1016/j.heliyon.2019.e02485
      [24]
      A.G. Guezennec, C. Joulian, J. Jacob, A. Archane, D. Ibarra, R. de Buyer, F. Bodénan, and P. d’Hugues, Influence of dissolved oxygen on the bioleaching efficiency under oxygen enriched atmosphere, Miner. Eng., 106(2017), p. 64. doi: 10.1016/j.mineng.2016.10.016
      [25]
      S.H. Yin, W. Chen, X. Chen, and L.M. Wang, Bacterial-mediated recovery of copper from low-grade copper sulphide using acid-processed rice straw, Bioresour. Technol., 288(2019), art. No. 121605. doi: 10.1016/j.biortech.2019.121605
      [26]
      J.Y. Liu, X.X. Xiu, and P. Cai, Study of formation of jarosite mediated by thiobacillus ferrooxidans in 9K medium, Procedia Earth Planet. Sci., 1(2009), No. 1, p. 706. doi: 10.1016/j.proeps.2009.09.111
      [27]
      S.S. Feng, H.L. Yang, X. Zhan, and W. Wang, Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter, Bioresour. Technol., 161(2014), p. 371. doi: 10.1016/j.biortech.2014.03.027
      [28]
      S.S. Feng, H.L. Yang, and W. Wang, Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure, Bioresour. Technol., 192(2015), p. 75. doi: 10.1016/j.biortech.2015.05.055
      [29]
      S.H. Yin, L.M. Wang, A.X. Wu, X. Chen, and R.F. Yan, Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1337. doi: 10.1007/s12613-019-1826-5
      [30]
      H. Osorio, S. Mangold, Y. Denis, I. Ñancucheo, M. Esparza, D.B. Johnson, V. Bonnefoy, M. Dopson, and D.S. Holmes, Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans, Appl. Environ. Microbiol., 79(2013), No. 7, p. 2172. doi: 10.1128/AEM.03057-12
      [31]
      M. Dopson and D.B. Johnson, Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms, Environ. Microbiol., 14(2012), No. 10, p. 2620. doi: 10.1111/j.1462-2920.2012.02749.x
      [32]
      H.M. Lizama, Copper bioleaching behaviour in an aerated heap, Int. J. Miner. Process., 62(2001), No. 1-4, p. 257. doi: 10.1016/S0301-7516(00)00057-0

    Catalog


    • /

      返回文章
      返回