留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(8)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  3667
  • HTML全文浏览量:  428
  • PDF下载量:  98
  • 被引次数: 0
Yanping Li, Xue Bian, Yang Liu, Wenyuan Wu,  and Gaofeng Fu, Synthesis and characterization of ceria nanoparticles by complex-precipitation route, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 292-297. https://doi.org/10.1007/s12613-020-2126-9
Cite this article as:
Yanping Li, Xue Bian, Yang Liu, Wenyuan Wu,  and Gaofeng Fu, Synthesis and characterization of ceria nanoparticles by complex-precipitation route, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 292-297. https://doi.org/10.1007/s12613-020-2126-9
引用本文 PDF XML SpringerLink
研究论文

络合沉淀法合成纳米二氧化铈及其表征

文章亮点

  • (1) 利用简单的络合沉淀法合成了纳米二氧化铈。
  • (2) 结合柠檬酸的电离过程和元素分析结果,得到了前驱体的组成和比例。
  • (3) 络合沉淀法制备出的纳米二氧化铈在紫外线全波段的平均透过率均小于5%,是一种良好的紫外线屏蔽剂。
  • 由于其独特的物理化学性质,纳米二氧化铈是一种良好的无机紫外线屏蔽剂。纳米二氧化铈的制备方法有水热法、溶胶–凝胶法、均相沉淀法、电化学方法等,这些方法通常有操作流程复杂、周期较长等缺点。本文旨在探索一种操作简单,周期短的纳米二氧化铈制备方法。本文以氯化铈为铈源、柠檬酸为沉淀剂,采用络合沉淀法成功合成了纳米二氧化铈。通过元素分析计算了前驱体的组成,并采用比表面积测试、显微组织观察、紫外-可见光透过率曲线研究了纳米二氧化铈的物理性能、微观组织与紫外屏蔽性能的关系。研究结果表明,随着pH的升高,前驱体中Ce(H2Cit)3的比例下降,而Ce(OH)3的比例上升,当pH = 6.5时,前驱体由CeCit和Ce(OH)3组成;随着柠檬酸与Ce3+的摩尔比(n)的增加,前驱体中Ce(H2Cit)3的比例升高,而Ce(OH)3的比例下降。当柠檬酸与Ce3+的摩尔比(n)为0.25、pH为5.5时,纳米二氧化铈在长波紫外线波段的平均透过率为4.42%,在中波紫外线波段的平均透过率为1.56%。良好的紫外屏蔽性能离不开纳米二氧化铈的物理性能和微观组织:比表面积的增大可以提高纳米二氧化铈的紫外屏蔽性能,当柠檬酸与Ce3+的摩尔比(n)为0.25、pH为5.5时,纳米二氧化铈的比表面积最大,为83.17 m2/g。纳米二氧化铈低指数晶面的晶面间距也影响着纳米二氧化铈的紫外屏蔽性能,在合理变化区间内,晶面间距越大,原子排列越密集,紫外屏蔽性能越好。由此得出这样的结论:络合沉淀法制备出的纳米二氧化铈具有优异的紫外屏蔽性能,但是,柠檬酸与Ce3+的摩尔比(n)不宜过大,pH不宜超过5.5。

  • Research Article

    Synthesis and characterization of ceria nanoparticles by complex-precipitation route

    + Author Affiliations
    • Ceria (CeO2) nanoparticles were successfully synthesized via a simple complex-precipitation route that employs cerium chloride as cerium source and citric acid as precipitant. The elemental analysis results of carbon, hydrogen, oxygen, and cerium in the precursors were calculated, and the results revealed that the precursors were composed of Ce(OH)3, Ce(H2Cit)3, or CeCit. X-ray diffraction analysis showed that all ceria nanoparticles had a face-centered cubic structure. With the molar ratio of citric acid to Ce3+ (n) of 0.25 and pH of 5.5, the specific surface area of the sample reached the maximum value of 83.17 m2/g. Ceria nanoparticles were observed by scanning electron microscopy. Selected area electron diffraction patterns of several samples were obtained by transmission electron microscopy, and the crystal plane spacing of each low-exponent crystal plane was calculated. The ultraviolet (UV)–visible transmittance curve showed that ceria can absorb UV light and pass through visible light. Among all samples, the minimum average transmittance of ultraviolet radiation a (UVA) was 4.42%, and that of ultraviolet radiation b (UVB) was 1.56%.

    • loading
    • [1]
      T. Henriksen, A. Dahlback, S.H.H. Larsen, and J. Moan, Ultraviolet-radiation and skin cancer. effect of an ozone layer depletion, Photochem. Photobiol., 51(1990), No. 5, p. 579. doi: 10.1111/j.1751-1097.1990.tb01968.x
      [2]
      C. Antoniou, M.G. Kosmadaki, A.J. Stratigos, and A.D. Katsambas, Sunscreens – what’s important to know, J. Eur. Acad. Dermatol. Venereol., 22(2008), No. 9, p. 1110. doi: 10.1111/j.1468-3083.2007.02580.x
      [3]
      N.M. Zholobak, V.K. Ivanov, A.B. Shcherbakov, A.S. Shaporev, O.S. Polezhaeva, A.Y. Baranchikov, N.Y. Spivak, and Y.D. Tretyakov, UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions, J. Photoch. Photobiol. B, 102(2011), No. 1, p. 32. doi: 10.1016/j.jphotobiol.2010.09.002
      [4]
      T. Masui, M. Yamamoto, T. Sakata, H. Morib, and G.Y. Adachi, Synthesis of BN-coated CeO2 fine powder as a new UV blocking material, J. Mater. Chem., 10(2000), No. 2, p. 353. doi: 10.1039/a906583k
      [5]
      C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, and L.Q. Chen, Controlled synthesis of CeO2 nanorods by a solvothermal method, Nanotechnology, 16(2005), No. 9, p. 1454. doi: 10.1088/0957-4484/16/9/006
      [6]
      C. Korsvik, S. Patil, S. Seal, and W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles, Chem. Commun., 10(2007), p. 1056. doi: 10.1039/B615134E
      [7]
      T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Karakoti, A.S. Heckert, J.E.S. King, S. Seal, and W.T. Self, Nanoceria exhibit redox state-dependent catalase mimetic activity, Chem. Commun., 46(2010), No. 16, p. 2736. doi: 10.1039/b922024k
      [8]
      A.B. Shcherbakov, N.M. Zholobak, V.K. Ivanov, O. Ivanova, A. Marchevsky, A. Baranchikov, N. Spivak, and Y. Tretyakov, Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria, Russ. J. Inorg. Chem., 57(2012), No. 11, p. 1411. doi: 10.1134/S0036023612110137
      [9]
      J.A. Rodriguez, J.C. Hanson, J.Y. Kim, G. Liu, A. Iglesias-Juez, and M.J. Fernandez-García, Properties of CeO2 and Ce1–xZrxO2 nanoparticles: X-ray absorption near-edge spectroscopy, density functional, and time-resolved X-ray diffraction studies, Phys. Chem. B, 107(2003), No. 15, p. 3535. doi: 10.1021/jp022323i
      [10]
      X.D. Zhou, W. Huebner, and H.U. Anderson, Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2, Appl. Phys. Lett., 80(2002), No. 20, p. 3814. doi: 10.1063/1.1481244
      [11]
      E. Matijevi and W.P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III), J. Colloid Interface Sci., 118(1987), No. 2, p. 506. doi: 10.1016/0021-9797(87)90486-3
      [12]
      P.L. Chen and I.W. Chen, Reactive cerium(IV) oxide powders by the homogeneous precipitation method, J. Am. Ceram. Soc., 76(1993), No. 6, p. 1577. doi: 10.1111/j.1151-2916.1993.tb03942.x
      [13]
      A. Verma1, N. Karar, A.K. Bakhshi, H. Chander, S.M. Shivaprasad, and S.A. Agnihotry, Structural, morphological and photoluminescence characteristics of sol–gel derived nano phase CeO2films deposited using citric acid, J. Nanoparticle Res., 9(2007), No. 2, p. 317. doi: 10.1007/s11051-006-9085-6
      [14]
      X. Chu, W.I. Chung, and L.D. Schmidt, Sintering of sol–gel-prepared submicrometer particles studied by transmission electron microscopy, J. Am. Ceram. Soc., 76(1993), No. 8, p. 2115. doi: 10.1111/j.1151-2916.1993.tb08344.x
      [15]
      L.X. Yin, Y.Q. Wang, G.S. Pang, Y. Koltypin, and A. Gedanken, Sonochemical synthesis of cerium oxide nanoparticles—Effect of additives and quantum size effect, J. Colloid Interface Sci., 246(2002), No. 1, p. 78. doi: 10.1006/jcis.2001.8047
      [16]
      D.S. Zhang, H.X. Fu, L.Y. Shi, C.S. Pan, Q. Li, Y.L. Chu, and W.J. Yu, Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol, Inorg. Chem., 46(2007), No. 7, p. 2446. doi: 10.1021/ic061697d
      [17]
      Y.C. Zhou, R.J. Phillips, and J.A. Switzer, Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders, J. Am. Ceram. Soc., 78(1995), No. 4, p. 981. doi: 10.1111/j.1151-2916.1995.tb08425.x
      [18]
      Z.J. Yang, Y.Z. Yang, H. Liang, and L. Liu, Hydrothermal synthesis of monodisperse CeO2 nanocubes, Mater. Lett., 63(2009), No. 21, p. 1774. doi: 10.1016/j.matlet.2009.05.034
      [19]
      R.B. Yu, L. Yan, P. Zheng, J. Chen, and X.R. Xing, Controlled synthesis of CeO2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route, J. Phys. Chem. C, 112(2008), No. 50, p. 19896. doi: 10.1021/jp806092q
      [20]
      F. Abbas, J. Iqbal, T. Jan, N. Badshah, Q. Mansoor, and M. Ismail, Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 102. doi: 10.1007/s12613-016-1216-1
      [21]
      M.Z. Wu, Y.M. Liu, P. Dai, Z.Q. Sun, and X.S. Liu, Hydrothermal synthesis and photoluminescence behavior of CeO2 nanowires with the aid of surfactant PVP, Int. J. Miner. Metall. Mater., 17(2010), No. 4, p. 470. doi: 10.1007/s12613-010-0343-3
      [22]
      J. Wang, W. Zeng, and Z.C. Wang, Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties, Ceram. Int., 42(2016), No. 3, p. 4567. doi: 10.1016/j.ceramint.2015.11.150
      [23]
      Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Synthesis and characterization of CeO2 nano-rods, Ceram. Int., 39(2013), No. 6, p. 6607. doi: 10.1016/j.ceramint.2013.01.096
      [24]
      Y. Chen, S.S. Lv, and C. Chen, Controllable synthesis of ceria nanoparticles with uniform reactive {100 exposure planes, J. Phys. Chem. C, 118(2014), No. 8, p. 4437. doi: 10.1021/jp410625n
      [25]
      M.L. Zhang, Y. Chen, C.J. Qiu, X.F. Fan, C.L. Chen, and Z.C. Wang, Synthesis and atomic-scale characterization of CeO2 nano-octahedrons, Phys. E, 64(2014), p. 218. doi: 10.1016/j.physe.2014.08.002
      [26]
      Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Hydrothermal synthesis of ceria hybrid architectures of nano-rods and nano-octahedrons, Mater. Lett., 96(2013), p. 210. doi: 10.1016/j.matlet.2013.01.069
      [27]
      Y. Chen, C.J. Qiu, C.L. Chen, X.F. Fan, S.B. Xu, W.W. Guo, and Z.C. Wang, Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors, Mater. Lett., 122(2014), p. 90. doi: 10.1016/j.matlet.2014.01.178
      [28]
      P.F. Hu, Y. Chen, R. Sun, Y. Chen, Y.R. Yin, and Z.C. Wang, Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes, Appl. Surf. Sci., 401(2017), p. 100. doi: 10.1016/j.apsusc.2017.01.005
      [29]
      T. Masui, K. Fujiwara, K.I. Machida, G.Y. Adachi, T. Sakata, and H. Mori, Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles, Chem. Mater., 9(1997), No. 10, p. 2197. doi: 10.1021/cm970359v
      [30]
      H.M. Yang, C.H. Huang, A.D. Tang, X.C. Zhang, and W.G. Yang, Microwave-assisted synthesis of ceria nanoparticles, Mater. Res. Bull., 40(2005), No. 10, p. 1690. doi: 10.1016/j.materresbull.2005.05.014
      [31]
      O. Yokota, M. Yashima, M. Kakihana, A. Shimofuku, and M. Yoshimura, Synthesis of metastable tetragonal (t′) ZrO2–12 mol% YO1.5 by the organic polymerized complex method, J. Am. Ceram. Soc., 82(2004), No. 5, p. 1333. doi: 10.1111/j.1151-2916.1999.tb01917.x
      [32]
      X.M. Zhou, Preparation of superfine cerium oxide by salt precipitation of citrate, Chin. J. Rare Earth Sci., 20(2002), Suppl., p. 67.
      [33]
      S.H. Yin, W.Y. Wu, S.W. Li, X. Bian, J.H. Peng, and L.B. Zhang, Ultraviolet and infrared spectral properties of rare earth-lactic acid complex, Chin. Rare Earth, 36(2015), No. 3, p. 122. doi: 10.16533/J.CNKI.15-1099/TF.201503021

    Catalog


    • /

      返回文章
      返回