Cite this article as: |
Baoqiang Yu, Jue Kou, Chunbao Sun, and Yi Xing, Extraction of copper from copper-bearing biotite by ultrasonic-assisted leaching, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 212-217. https://doi.org/10.1007/s12613-020-2132-y |
寇珏 E-mail: koujue@ustb.edu.cn
邢奕 E-mail: xingyi@ustb.edu.cn
含铜云母是赞比亚铜矿带地表氧化矿中一种主要的的难处理含铜矿物。为了有效提取含铜云母中的铜,本研究采用超声波助浸技术对含铜云母进行强化浸出。试验结果表明,相对于常规加温浸出而言,超声波助浸能够使浸出时间由120 min缩短为40 min,硫酸浓度由0.5 mol·L−1 降低为 0.3 mol·L−1。此外,当铜的浸出率都是78%时,浸出温度可由75°C 降低到45°C。超声波强化浸出机理研究结果表明,超声波能够对含铜云母进行有效剥离,使其比表面积由0.55 m2·g−1 显著增加到1.67 m2·g−1。该研究结果表明超声波助浸技术能够使含铜云母中的铜得到有效回收,同时对于从层状硅酸盐中提取有价金属也具有一定的参考价值。
Copper-bearing biotite is a refractory copper mineral found on the surface of the Zambian Copperbelt. Biotite is a copper oxide from which copper is extracted by various methods, especially by leaching. Leaching is the process of extracting a substance from a solid material dissolved in a liquid. To improve the efficiency of the leaching process by a more effective method, a new method called ultrasonic-assisted acid leaching is proposed and applied in this study. Compared with regular acid leaching, the ultrasound method reduced the leaching time from 120 to 40 min, and sulfuric acid concentration reduced from 0.5 to 0.3 mol·L−1. Besides, leaching temperature could be reduced from 75 to 45°C at the leaching rate of 78%. The mechanism analysis indicates that an ultrasonic wave can cause the delamination of a copper-bearing biotite and increase its specific surface area from 0.55 to 1.67 m2·g−1. The results indicate that copper extraction from copper-bearing biotite by ultrasonic-assisted acid leaching is more effective than regular acid leaching. This study proposes a promising method for recycling valuable metals from phyllosilicate minerals.
[1] |
R.Q. Liu and S.Y. Pang, Zambia’ s major ore resources and typical deposits, Resour. Ind., 15(2013), No. 3, p. 57.
|
[2] |
J.C. Liu, J.P. Mo, and C. Liu, Genesis of copper deposits in copperbelt of Zambia, Miner. Resour. Geol., 30(2016), No. 2, p. 203.
|
[3] |
X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
|
[4] |
A. Bahrami, M. Mirmohammadi, Y. Ghorbani, F. Kazemi, M. Abdollahi, and A. Danesh, Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 430. doi: 10.1007/s12613-019-1733-9
|
[5] |
W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
|
[6] |
G.R. Wang, H.Y. Yang, Y.Y. Liu, L.L. Tong, and A. Auwalu, The alteration mechanism of copper-bearing biotite and leachable property of copper-bearing minerals in Mulyashy copper mine, Zambia, Sci. Rep., 9(2019), No. 1, p. 15040. doi: 10.1038/s41598-019-50519-z
|
[7] |
G.R. Wang, H.Y. Yang, L.L. Tong, and Y.Y. Liu, and Ali Auwalu, Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 292. doi: 10.1007/s12613-019-1856-z
|
[8] |
E.C. Schinor, M.J. Salvador, I.C.C. Turatti, O.L.A.D. Zucchi, and D.A. Dias, Comparison of classical and ultrasound-assisted extractions of steroids and triterpenoids from three Chresta spp, Ultrason. Sonochem., 11(2004), No. 6, p. 415. doi: 10.1016/j.ultsonch.2003.09.005
|
[9] |
X. Wang, C. Srinivasakannan, X.H. Duan, J.H. Peng, D.J. Yang, and S.H. Ju, Leaching kinetics of zinc residues augmented with ultrasound, Sep. Purif. Technol., 115(2013), p. 66. doi: 10.1016/j.seppur.2013.04.043
|
[10] |
K.L. Narayana, K.M. Swamy, K.S. Rao, and J.S. Murty, Leaching of metals from ores with ultrasound, Miner. Process. Extr. Metall. Rev., 16(1997), No. 4, p. 239. doi: 10.1080/08827509708914137
|
[11] |
H. Güngör and A. Elik, Comparison of ultrasound-assisted leaching with conventional and acid bomb digestion for determination of metals in sediment samples, Microchem. J., 86(2007), No. 1, p. 65. doi: 10.1016/j.microc.2006.10.006
|
[12] |
J. Jordens, N. De Coker, B. Gielen, T. van Gerven, and L. Braeken, Ultrasound precipitation of manganese carbonate: The effect of power and frequency on particle properties, Ultrason. Sonochem., 26(2015), p. 64. doi: 10.1016/j.ultsonch.2015.01.017
|
[13] |
S.H. Yin, J.N. Pei, F. Jiang, S.W. Li, J.H. Peng, L.B. Zhang, S.H. Ju, and C. Srinivasakannan, Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution, Ultrason. Sonochem., 41(2018), p. 156. doi: 10.1016/j.ultsonch.2017.09.028
|
[14] |
E. Şayan and M. Bayramoğlu, Statistical modeling and optimization of ultrasound-assisted sulfuric acid leaching of TiO2 from red mud, Hydrometallurgy, 71(2004), No. 3-4, p. 397. doi: 10.1016/S0304-386X(03)00113-0
|
[15] |
L. Li, L.Y. Zhai, X.X. Zhang, J. Lu, R.J. Chen, F. Wu, and K. Amine, Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process, J. Power Sources, 262(2014), p. 380. doi: 10.1016/j.jpowsour.2014.04.013
|
[16] |
F. Jiang, Y.Q. Chen, S.H. Ju, Q.Y. Zhu, L.B. Zhang, J.H. Peng, X.M. Wang, and J.D. Miller, Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries, Ultrason. Sonochem., 48(2018), p. 88. doi: 10.1016/j.ultsonch.2018.05.019
|
[17] |
X.M. Shen, L.S. Li, Z.J. Wu, H. Lü, and J. Lü, Ultrasonic-assisted acid leaching of indium from blast furnace sludge, Metall. Mater. Trans. B, 44(2013), No. 6, p. 1324. doi: 10.1007/s11663-013-9936-3
|
[18] |
L.B. Zhang, W.Q. Guo, J.H. Peng, J. Li, G. Lin, and X. Yu, Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy, Ultrason. Sonochem., 31(2016), p. 143. doi: 10.1016/j.ultsonch.2015.12.006
|
[19] |
A.V. Beşe, Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching, Ultrason. Sonochem., 14(2007), No. 6, p. 790. doi: 10.1016/j.ultsonch.2007.01.007
|
[20] |
J.Q. Xue, X. Lu, Y.W. Du, W.B. Mao, Y.J. Wang, and J.X. Li, Ultrasonic-assisted oxidation leaching of nickel sulfide concentrate, Chin. J. Chem. Eng., 18(2010), No. 6, p. 948. doi: 10.1016/S1004-9541(09)60152-X
|
[21] |
K.S. Rao, K.L. Narayana, K.M. Swamy, and J.S. Murty, Influence of ultrasound in ammoniacal leaching of a copper oxide ore, Metall. Mater. Trans. B, 28(1997), No. 4, p. 721. doi: 10.1007/s11663-997-0046-y
|
[22] |
L.K. Fu, L.B. Zhang, S.X. Wang, W. Cui, and J.H. Peng, Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination–oxidation, Ultrason. Sonochem., 37(2017), p. 471. doi: 10.1016/J.ULTSONCH.2017.02.008
|
[23] |
R.L. Zhang, X.F. Zhang, S.Z. Tang, and A.D. Huang, Ultrasound-assisted HCl–NaCl leaching of lead-rich and antimony-rich oxidizing slag, Ultrason. Sonochem., 27(2015), p. 187. doi: 10.1016/j.ultsonch.2015.05.020
|
[24] |
J.L. Pérez-Rodríguez, A. Wiewióra, J. Drapa-la, and L.A. Pérez-Maqueda, The effect of sonication on dioctahedral and trioctahedral micas, Ultrason. Sonochem., 13(2006), No. 1, p. 61. doi: 10.1016/j.ultsonch.2004.12.001
|
[25] |
J. Chang, E.D. Zhang, L.B. Zhang, J.H. Peng, J.W. Zhou, C. Srinivasakannan, and C.J. Yang, A comparison of ultrasound-augmented and conventional leaching of silver from sintering dust using acidic thiourea, Ultrason. Sonochem., 34(2017), p. 222. doi: 10.1016/j.ultsonch.2016.05.038
|