留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 4
Apr.  2021

图(9)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  2541
  • HTML全文浏览量:  471
  • PDF下载量:  56
  • 被引次数: 0
Dong Wu, Wen-ya Li, Yan-jun Gao, Jun Yang, Quan Wen, Nektarios Vidakis,  and Achillefs Vairis, Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al–Mg joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 710-717. https://doi.org/10.1007/s12613-020-2134-9
Cite this article as:
Dong Wu, Wen-ya Li, Yan-jun Gao, Jun Yang, Quan Wen, Nektarios Vidakis,  and Achillefs Vairis, Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al–Mg joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 710-717. https://doi.org/10.1007/s12613-020-2134-9
引用本文 PDF XML SpringerLink
研究论文

焊接速度对自适应双轴肩搅拌摩擦焊接Al–Mg合金接头微观组织和机械性能的影响

  • Research Article

    Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al–Mg joints

    + Author Affiliations
    • The butt welds of 4-mm thick 5A06 aluminum alloy plates were produced by adjustable-gap bobbin-tool friction stir travel with travel speeds of 200, 300, and 400 mm/min in this study. The microstructure was studied using optical microscopy and electron backscatter diffraction (EBSD). Tensile tests and microhardness measurements were performed to identify the effect of the travel speed on the joint mechanical properties. Sound joints were obtained at 200 mm/min while voids were present at different positions of the joints as the travel speed increased. The EBSD results show that the grain size, high angle grain boundaries, and density of geometrically necessary dislocations in different regions of the joint vary depending on the recovery and recrystallization behavior. Specific attention was given to the relationship between the local microstructure and mechanical properties. Microhardness measurements show that the average hardness of the stir zone (SZ) was greater than that of the base material, which was only affected slightly by the travel speed. The tensile strength of the joint decreased with increasing travel speed and the maximal strength efficiency reached 99%.

    • loading
    • [1]
      A. Garg, M. Raturi, and A. Bhattacharya, Metallurgical behavior and variation of vibro-acoustic signal during preheating assisted friction stir travel between AA6061-T6 and AA7075-T651 alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 8, p. 1610. doi: 10.1016/S1003-6326(19)65068-5
      [2]
      R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, and K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 20, p. 5246. doi: 10.1016/j.msea.2010.04.086
      [3]
      M. Esmaily, N. Mortazavi, W. Osikowicz, H. Hindsefelt, J.E. Svensson, M. Halvarsson, J. Martin, and L.G. Johansson, Bobbin and conventional friction stir travel of thick extruded AA6005-T6 profiles, Mater. Des., 108(2016), p. 114. doi: 10.1016/j.matdes.2016.06.089
      [4]
      J.J. Shen, F.F. Wang, U.F.H. Suhuddin, S.Y. Hu, W.Y. Li, and J.F. Dos Santos, Crystallographic texture in bobbin tool friction-stir-welded aluminum, Metall. Mater. Trans. A, 46(2015), No. 7, p. 2809. doi: 10.1007/s11661-015-2948-7
      [5]
      W.M. Thomas, J. Martin, and C.S. Wiesner, Discovery invention and innovation of friction technologies - for the aluminium industries, [in] Proceedings of The 11th International Aluminium Conference INALCO 2010, Amsterdam, 2010.
      [6]
      F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, and J.F. Dos Santos, Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir travel of Al–Li alloy, Mater. Des., 86(2015), p. 933. doi: 10.1016/j.matdes.2015.07.096
      [7]
      Y.X. Huang, L. Wan, T.F. Huang, Z.L. Lv, L. Zhou, and J.C. Feng, The weld formation of self-support friction stir welds for aluminum hollow extrusion, Int. J. Adv. Manuf. Technol., 87(2016), No. 1-4, p. 1067. doi: 10.1007/s00170-016-8591-7
      [8]
      Q. Wen, W.Y. Li, Y.J. Gao, J. Yang, and F.F. Wang, Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir travel of aluminum alloy, Int. J. Adv. Manuf. Technol., 100(2019), No. 9-12, p. 2679. doi: 10.1007/s00170-018-2750-y
      [9]
      M.K. Sued, D. Pons, J. Lavroff, and E.H. Wong, Design features for bobbin friction stir travel tools: Development of a conceptual model linking the underlying physics to the production process, Mater. Des., 54(2014), p. 632. doi: 10.1016/j.matdes.2013.08.057
      [10]
      L. Zhou, G.H. Li, C.L. Liu, J. Wang, Y.X. Huang, J.C. Feng, and F.X. Meng, Microstructural characteristics and mechanical properties of Al–Mg–Si alloy self-reacting friction stir welded joints, Sci. Technol. Weld. Joining, 22(2017), No. 5, p. 438. doi: 10.1080/13621718.2016.1251733
      [11]
      K. Fuse and V. Badheka, Bobbin tool friction stir welding: A review, Sci. Technol. Weld. Joining, 24(2019), No. 4, p. 277. doi: 10.1080/13621718.2018.1553655
      [12]
      S. Mohammad Kamil, Fixed Bobbin Friction Stir Welding of Marine Grade Aluminium [Dissertation], University of Canterbury, Christchurch, 2015.
      [13]
      H.J. Zhang, M. Wang, X. Zhang, and G.X. Yang, Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy, Mater. Des., 65(2015), p. 559. doi: 10.1016/j.matdes.2014.09.068
      [14]
      L. Zhou, G.H. Li, G.D. Zha, F.Y. Shu, H.J. Liu, and J.C. Feng, Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy, Sci. Technol. Weld. Joining, 23(2018), No. 7, p. 596. doi: 10.1080/13621718.2018.1432098
      [15]
      S. Zandsalimi, A. Heidarzadeh, and T. Saeid, Dissimilar friction-stir travel of 430 stainless steel and 6061 aluminum alloy: Microstructure and mechanical properties of the joints, Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(2019), No. 9, p. 1791. doi: 10.1177/1464420718789447
      [16]
      M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 527(2010), No. 10-11, p. 2738. doi: 10.1016/j.msea.2010.01.004
      [17]
      S.I. Wright, M.M. Nowell, and D.P. Field, A review of strain analysis using electron backscatter diffraction, Microsc. Microanal., 17(2011), No. 3, p. 316. doi: 10.1017/S1431927611000055
      [18]
      R. Badji, T. Chauveau, and B. Bacroix, Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint, Mater. Sci. Eng. A, 575(2013), p. 94. doi: 10.1016/j.msea.2013.03.018
      [19]
      W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scripta Mater., 58(2008), No. 11, p. 994. doi: 10.1016/j.scriptamat.2008.01.050
      [20]
      D.X. Wei, Y. Koizumi, M. Nagasako, and A. Chiba, Refinement of lamellar structures in Ti–Al alloy, Acta Mater., 125(2017), p. 81. doi: 10.1016/j.actamat.2016.11.045
      [21]
      C.K. Yan, A.H. Feng, S.J. Qu, G.J. Cao, J.L. Sun, J. Shen, and D.L. Chen, Dynamic recrystallization of titanium: Effect of pre-activated twinning at cryogenic temperature, Acta Mater., 154(2018), p. 311. doi: 10.1016/j.actamat.2018.05.057
      [22]
      G.H. Li, L. Zhou, S.F. Luo, F.B. Dong, and N. Guo, Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy, Mater. Sci. Eng. A, 776(2020), art. No. 138953. doi: 10.1016/j.msea.2020.138953
      [23]
      P.L. Niu, W.Y. Li, A. Vairis, and D.L. Chen, Cyclic deformation behavior of friction-stir-welded dissimilar AA5083-to-AA2024 joints: Effect of microstructure and loading history, Mater. Sci. Eng. A, 744(2019), p. 145. doi: 10.1016/j.msea.2018.12.014
      [24]
      J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural investigation friction stir welded 7050-T651 aluminium, Acta Mater., 51(2003), No. 3, p. 713. doi: 10.1016/S1359-6454(02)00449-4
      [25]
      Z.H. Zhang, W.Y. Li, Y. Feng, J.L. Li, and Y.J. Chao, Global anisotropic response of friction stir welded 2024 aluminum sheets, Acta Mater., 92(2015), p. 117. doi: 10.1016/j.actamat.2015.03.054
      [26]
      N. Kamikawa, X.X. Huang, N. Tsuji, and N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed, Acta Mater., 57(2009), No. 14, p. 4198. doi: 10.1016/j.actamat.2009.05.017
      [27]
      K.V. Jata and S.L. Semiatin, Continuous dynamic recrystallization during friction stir travel of high strength aluminum alloys, Scripta Mater., 43(2000), No. 8, p. 743. doi: 10.1016/S1359-6462(00)00480-2
      [28]
      G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution, Acta Mater., 54(2006), No. 7, p. 1759. doi: 10.1016/j.actamat.2005.11.044

    Catalog


    • /

      返回文章
      返回