留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  4479
  • HTML全文浏览量:  1238
  • PDF下载量:  127
  • 被引次数: 0
Yu.G. Chabak, K. Shimizu, V.G. Efremenko, M.A. Golinskyi, K. Kusumoto, V.I. Zurnadzhy,  and A.V. Efremenko, Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 78-87. https://doi.org/10.1007/s12613-020-2135-8
Cite this article as:
Yu.G. Chabak, K. Shimizu, V.G. Efremenko, M.A. Golinskyi, K. Kusumoto, V.I. Zurnadzhy,  and A.V. Efremenko, Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 78-87. https://doi.org/10.1007/s12613-020-2135-8
引用本文 PDF XML SpringerLink
研究论文

高硼多组分铸铁的组织及相元素分布

  • 通讯作者:

    V.G. Efremenko    E-mail: vgefremenko@gmail.com

  • 这种新提出的新型铸铁的化学成分为在0.7C–5W–5Mo–5V–10Cr–2.5Ti (wt%)中分别添加1.6wt% B和2.7wt% B。这项工作的目的是研究硼的含量对合金的结构状态和阶段元素分布对耐磨结构成分的形成影响。结果表明,当B含量为1.6wt%时,合金由三种共晶组成:(a) “M2(C,B)5+铁素体”具有“汉字”形貌 (89.8vol%), (b) “M7(CB)3+奥氏体”具有“莲座”形貌,(c) “M3C+奥氏体”具有“莱氏体”形貌 (2.7vol%)。当硼含量为2.7wt%时,基体硬度由HRC 31提高到HRC 38.5。组织中出现了平均显微硬度为HV 2797的初生碳化物M2(C,B)5,体积分数为17.6vol%。共晶体(a)和(b,c)的体积分数分别降低到71.2vol%和3.9vol%。基体为“铁素体/奥氏体” (1.6wt% B) 和“铁素体/珠光体”(2.7wt% B),两种铸铁均含有致密析出碳化物(Ti,M)C和碳硼化物(Ti,M)(C,В),体积分数为7.3%–7.5%。基于能量色散X射线能谱,给出了元素相的分布和相应的相公式。

  • Research Article

    Microstructure and phase elemental distribution in high-boron multi-component cast irons

    + Author Affiliations
    • The novel cast irons of chemical composition (wt%) 0.7C–5W–5Mo–5V–10Cr–2.5Ti were invented with the additions of 1.6wt% B and 2.7wt% B. The aim of this work was to study the effect of boron on the structural state of the alloys and phase elemental distribution with respect to the formation of wear-resistant structural constituents. It was found that the alloy containing 1.6wt% B was composed of three eutectics: (a) “M2(C,B)5+ferrite” having a “Chinese Script” morphology (89.8vol%), (b) “M7(C,B)3+Austenite” having a “Rosette” morphology, and (c) “M3C+Austenite” having a “Ledeburite”-shaped morphology (2.7vol%). With 2.7wt% of boron content, the bulk hardness increased from HRC 31 to HRC 38.5. The primary carboborides M2(C,B)5 with average microhardness of HV 2797 appeared in the structure with a volume fraction of 17.6vol%. The volume fraction of eutectics (a) and (b, c) decreased to 71.2vol% and 3.9vol%, respectively. The matrix was “ferrite/austenite” for 1.6wt% B and “ferrite/pearlite” for 2.7wt% B. Both cast irons contained compact precipitates of carbide (Ti,M)C and carboboride (Ti,M)(C,В) with a volume fraction of 7.3%–7.5%. Based on the energy-dispersive X-ray spectroscopy, the elemental phase distributions and the appropriate phase formulas are presented in this work.

    • loading
    • [1]
      O.P. Ostash, V.V. Kulyk, V.D. Poznyakov, O.A. Haivorons’kyi, L.I. Markashova, V.V. Vira, Z.A. Duriagina, and T.L. Tepla, Fatigue crack growth resistance of welded joints simulating the weld-repaired railway wheels metal, Arch. Mater. Sci. Eng., 2(2017), No. 86, p. 49. doi: 10.5604/01.3001.0010.4885
      [2]
      A.M. Dubey, A. Kumar, and A.K. Yadav, Wear behaviour of friction stir weld joint of cast Al (4%–10%) Cu alloy welded at different operating parameters, J. Mater. Process. Technol., 240(2017), p. 87. doi: 10.1016/j.jmatprotec.2016.09.003
      [3]
      A. Anishchenko, V. Kukhar, V. Artiukh, and O. Arkhipova, Application of G. Lame’s and J. Gielis’ formulas for description of shells superplastic forming, MATEC Web Conf., 239(2018), art. No. 06007. doi: 10.1051/matecconf/201823906007
      [4]
      V.G. Efremenko, V.I. Zurnadzhi, Y.G. Chabak, O.V. Tsvetkova, and A.V. Dzherenova, Application of the Q-n-P-treatment for increasing the wear resistance of low-alloy steel with 0.75% C, Mater. Sci., 53(2017), No. 1, p. 67. doi: 10.1007/s11003-017-0045-3
      [5]
      A. Gonzalez-Pociño, F. Alvarez-Antolin, and J. Asensio-Lozano, Erosive wear resistance regarding different destabilization heat treatments of austenite in high chromium white cast iron, alloyed with Mo, Metals, 9(2019), No. 5, art. No. 522. doi: 10.3390/met9050522
      [6]
      V.G. Efremenko, Y.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur, and B.V. Efremenko, Structure refinement of high-Cr cast iron by plasma surface melting and post-heat treatment, Mater. Des., 126(2017), p. 278. doi: 10.1016/j.matdes.2017.04.022
      [7]
      A. Bedolla-Jacuinde, F. Guerra, I. Mejia, and U. Vera, Niobium additions to a 15%Cr–3%C white iron and its effects on the microstructure and on abrasive wear behavior, Metals, 9(2019), No. 12, art. No. 1321. doi: 10.3390/met9121321
      [8]
      Y. Matsubara, N. Sasaguri, K. Shimizu, and S. K. Yu, Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements, Wear, 250(2001), No. 1-12, p. 502. doi: 10.1016/S0043-1648(01)00599-3
      [9]
      M. Hashimoto, O. Kubo, and Y. Matsubara, Analysis of carbides in multi-component white cast iron for hot rolling mill rolls, ISIJ Int., 44(2004), No. 2, p. 372. doi: 10.2355/isijinternational.44.372
      [10]
      Y. Yokomizo, N. Sasaguri, K. Nanjo, and Y. Matsubara, Continuous cooling transformation behavior of multi-component white cast iron, J. Jpn. Foundry Eng. Soc., 74(2002), No. 1, p. 9.
      [11]
      J. Opapaiboon, M.S.N. Ayudhaya, P. Sricharoenchai, S. Inthidech, and Y. Matsubara, Effect of chromium content on heat treatment behavior of multi-alloyed white cast iron for abrasive wear resistance, Mater. Trans., 60(2019), No. 2, p. 346. doi: 10.2320/matertrans.M2018318
      [12]
      T. Meebupha, S. Inthidec, P. Sricharoenchai, and Y. Matsubara, Effect of molybdenum content on heat treatment behavior of multi-alloyed white cast iron, Mater. Trans., 58(2017), No. 4, p. 655. doi: 10.2320/matertrans.M2016396
      [13]
      S. Inthidech and Y. Matsubara, Effects of carbon balance and heat treatment on hardness and volume fraction of retained austenite of semi-multi-alloyed white cast iron, Int. J. Metalcast., 14(2020), No. 1, p. 132. doi: 10.1007/s40962-019-00343-y
      [14]
      Y. Zhang, K. Shimizu, K. Kusumoto, H. Hara, and C. Higuchi, Influence of Ni addition on erosive wear characteristics of multi-component white cast iron at elevated temperature, Wear, 376-377(2017), p. 452. doi: 10.1016/j.wear.2016.12.044
      [15]
      V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Kozarevs’ka, Y.G. Chabak, H. Hara, and K. Kusumoto, Abrasive wear resistance of spheroidal vanadium carbide cast irons, J. Frict. Wear, 34(2013), No. 6, p. 466. doi: 10.3103/S1068366613060068
      [16]
      Y. Zhang, K. Shimizu, X.B. Yaer, K. Kusumoto, and V.G. Efremenko, Erosive wear performance of heat treated multi-component cast iron containing Cr, V, Mn and Ni eroded by alumina spheres at elevated temperatures, Wear, 390-391(2017), p. 135. doi: 10.1016/j.wear.2017.07.017
      [17]
      S. Ma and J. Zhang, Wear resistant high boron cast alloy—A review, Rev. Adv. Mater. Sci., 44(2016), p. 54.
      [18]
      P. Christodoulou and N. Calos, A step towards designing Fe–Cr–B–C cast alloys, Mater. Sci. Eng. A, 301(2001), No. 2, p. 103. doi: 10.1016/S0921-5093(00)01808-6
      [19]
      Y.X. Li, Z.L. Liu, and X. Chen, Development of boron white cast iron, Int. J. Cast Met. Res., 21(2008), No. 1-4, p. 67. doi: 10.1179/136404608X361684
      [20]
      H.K. Zeytin, H. Yildirim, B. Berme, S. Duduoĝlu, G. Kazdal, and A. Deniz, Effect of boron and heat treatment on mechanical properties of white cast iron for mining application, J. Iron Steel Res. Int., 18(2011), No. 11, p. 31. doi: 10.1016/S1006-706X(11)60114-3
      [21]
      I. Spiridonova, O. Sukhova, and O. Vashchenko, Multicomponent diffusion processes in boride-containing composite materials, Metall. Nov. Tekhnol., 21(1999), No.2, p. 122.
      [22]
      J.J. Zhang, J.C. Liu, H.M. Liao, M. Zeng, and S.D. Ma, A review on relationship between morphology of boride of Fe–B alloys and the wear/corrosion resistant properties and mechanisms, J. Mater. Res. Technol., 8(2019), No. 6, p. 6308. doi: 10.1016/j.jmrt.2019.09.004
      [23]
      Y.Z. Sun, J.B. Li, D. Wellburn, and C.S. Liu, Fabrication of wear-resistant layers with lamellar eutectic structure by laser surface alloying using the in situ reaction between Cr and B4C, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1294. doi: 10.1007/s12613-016-1351-8
      [24]
      Z.G. Chen, S. Miao, L.N. Kong, X. Wei, F.H. Zhang, and H.B. Yu, Effect of Mo concentration on the microstructure evolution and properties of high boron cast steel, Materials, 13(2020), No. 4, art. No. 975. doi: 10.3390/ma13040975
      [25]
      Y.X. Jian, Z.F. Huang, J.D. Xing, X.T. Liu, L. Sun, B.C. Zheng, and Y. Wang, Investigation on two-body abrasive wear behavior and mechanism of Fe–3.0wt%B cast alloy with different chromium content, Wear, 362-363(2016), p. 68. doi: 10.1016/j.wear.2016.04.029
      [26]
      C.L. Zhang, S.H. Li, Y.H. Lin, J. Ju, and H.G. Fu, Effect of boron on microstructure evolution and properties of wear-resistant cast Fe–Si–Mn–Cr–B alloy, J. Mater. Res. Technol., 9(2020), No. 3, p. 5564. doi: 10.1016/j.jmrt.2020.03.081
      [27]
      G.J. Cui, Z.W. Yang, W.J. Wang, and G.J. Gao, Tribological properties of Fe(Cr)–B alloys at high temperature, J. Cent. South Univ., 26(2019), No. 10, p. 2643. doi: 10.1007/s11771-019-4201-9
      [28]
      V.G. Efremenko, Y.G. Chabak, A. Lekatou, A.E. Karantzalis, and A.V. Efremenko, High-temperature oxidation and decarburization of 14.55 wtpct Cr-cast iron in dry air atmosphere, Metall. Mater. Trans. A, 47(2016), No. 4, p. 1529. doi: 10.1007/s11661-016-3336-7
      [29]
      B.J. Kim, S.S. Jung, J.H. Hwang, Y.H. Park, and Y.C. Lee, Effect of eutectic Mg2Si phase modification on the mechanical properties of Al–8Zn–6Si–4Mg–2Cu cast alloy, Metals, 9(2019), No. 1, art. No. 32. doi: 10.3390/met9010032
      [30]
      E. Georgatis, A. Lekatou, A.E. Karantzalis, H. Petropoulos, S. Katsamakis, and A. Poulia, Development of a cast Al–Mg2Si–Si in situ composite: Microstructure, heat treatment, and mechanical properties, J. Mater. Eng. Perform., 22(2013), No. 3, p. 729. doi: 10.1007/s11665-012-0337-6
      [31]
      V. Efremenko, K. Shimizu, T. Pastukhova, Y. Chabak, M. Brykov, K. Kusumoto, and A. Efremenko, Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents, Int. J. Mater. Res., 109(2018), No. 2, p. 147. doi: 10.3139/146.111583
      [32]
      M. Trepczyńska-Łent and E. Olejnik, Solidification front of oriented ledeburite, Arch. Foundry Eng., 16(2016), No. 1, p. 124. doi: 10.1515/afe-2016-0015
      [33]
      T. Kowoll, E. Müller, S. Fritsch-Decker, S. Hettler, H. Störmer, C. Weiss, and D. Gerthsen, Contrast of backscattered electron SEM images of nanoparticles on substrates with complex structure, Scanning, 2017(2017), art. No. 4907457. doi: 10.1155/2017/4907457
      [34]
      M. Aksoy, O. Yilmaz, and M.H. Korkut, The effect of strong carbide-forming elements on the adhesive wear resistance of ferritic stainless steel, Wear, 249(2001), No. 8, p. 639. doi: 10.1016/S0043-1648(01)00686-X
      [35]
      A. Nino, K. Takahashi, S. Sugiyama, and H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide, Mater. Trans., 53(2012), No. 8, p. 1475. doi: 10.2320/matertrans.M2012148
      [36]
      H.O. Pierson, Handbook of Refractory Carbides &Nitrides: Properties, Characteristics,Processing and Applications, Noyes Publications, Westwood, 1996.
      [37]
      V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, A.Y. Azarkhov, Y.G. Chabak, V.L. Greshta, O.B. Isayev, and M.V. Pomazkov, Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel, Mater. Sci. Eng. A, 745(2019), p. 307. doi: 10.1016/j.msea.2018.12.106

    Catalog


    • /

      返回文章
      返回