留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 4
Apr.  2021

图(9)

数据统计

分享

计量
  • 文章访问数:  2547
  • HTML全文浏览量:  473
  • PDF下载量:  41
  • 被引次数: 0
Hong-mei Shao, Xiao-yi Shen, Xue-tian Li, Yong Cui, Wei Zhang, Wen-di Xu, Zhong-cai Shao,  and Yu-chun Zhai, Growth mechanism and photocatalytic evaluation of flower-like ZnO microstructures prepared with SDBS assistance, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 729-737. https://doi.org/10.1007/s12613-020-2138-5
Cite this article as:
Hong-mei Shao, Xiao-yi Shen, Xue-tian Li, Yong Cui, Wei Zhang, Wen-di Xu, Zhong-cai Shao,  and Yu-chun Zhai, Growth mechanism and photocatalytic evaluation of flower-like ZnO microstructures prepared with SDBS assistance, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 729-737. https://doi.org/10.1007/s12613-020-2138-5
引用本文 PDF XML SpringerLink
研究论文

SDBS辅助制备的花状ZnO微结构的生长机理及光催化性能评价

  • Research Article

    Growth mechanism and photocatalytic evaluation of flower-like ZnO microstructures prepared with SDBS assistance

    + Author Affiliations
    • Flower-like ZnO microstructures were successfully produced using a hydrothermal method employing ZnSO4/(NH4)2SO4 as a raw material. The effect of the operating parameters of the hydrothermal temperature, OH/Zn2+ molar ratio, time, and amount of dispersant on the phase structure and micromorphology of the ZnO particles were investigated. The synthesis conditions of the flower-like ZnO microstructures were: hydrothermal temperature of 160°C, OH/Zn2+ molar ratio of 5:1, reaction time of 4 h, and 4 mL of dispersant. The flower-like ZnO microstructures were comprised of hexagon-shaped ZnO rods arranged in a radiatively. Degradation experiments of Rhodamine B with the flower-like ZnO microstructures demonstrated a degradation efficiency of 97.6% after 4 h of exposure to sunshine, indicating excellent photocatalytic capacity. The growth mechanism of the flower-like ZnO microstructures was presented.

    • loading
    • [1]
      X.Y. Shen, Y. Liang, Y.C. Zhai, and Z.Q. Ning, Shape-controllable synthesis of ultrafine ZnO powders of different morphologies, J. Mater. Sci. Technol., 29(2013), No. 1, p. 44. doi: 10.1016/j.jmst.2012.11.004
      [2]
      Y.X. Guo, S.W. Lin, X. Li, and Y.P. Liu, Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities, Appl. Surf. Sci., 384(2016), p. 83. doi: 10.1016/j.apsusc.2016.04.036
      [3]
      X.R. Zhang, M. Shakeel, B.S. Li, J.X. Zhang, and L. Wang, Synthesis of foamed zinc oxide–silica spheres coupled with g-C3N4 nanosheets for visible light photocatalysis, J. Mater. Sci., 54(2019), No. 20, p. 13118. doi: 10.1007/s10853-019-03848-3
      [4]
      M. Gusatti, D.A.R. Souza, N.C. Kuhnen, and H.G. Riella, Growth of variable aspect ratio ZnO nanorods by solochemical processing, J. Mater. Sci. Technol., 31(2015), No. 1, p. 10.
      [5]
      P.V. Adhyapak, S.P. Meshram, D.P. Amalnerkar, and I.S. Mulla, Structurally enhanced photocatalytic activity of flower-like ZnO synthesized by PEG-assited hydrothermal route, Ceram. Int., 40(2014), No. 1, p. 1951. doi: 10.1016/j.ceramint.2013.07.104
      [6]
      T.Z. Liu, Y.Y. Li, H. Zhang, M. Wang, X.Y. Fei, S.W. Duo, Y. Chen, J. Pan, and W. Wang, Tartaric acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with tunable optical and oxygen vacancy-induced photocatalytic properties, Appl. Surf. Sci., 357(2015), p. 516. doi: 10.1016/j.apsusc.2015.09.031
      [7]
      M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Rezakazemi, C. Valderrama, and J.L. Cortina, Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review, Chem. Eng. J., 391(2020), art. No. 123475. doi: 10.1016/j.cej.2019.123475
      [8]
      M. Laurenti, S. Stassi, G. Canavese, and V. Cauda, Surface engineering of nanostructured ZnO surfaces, Adv. Mater. Interfaces, 4(2017), No. 2, art. No. 1600758. doi: 10.1002/admi.201600758
      [9]
      S.W. Duo, Y.Y. Li, H. Zhang, T.Z. Liu, K. Wu, and Z.Q. Li, A facile salicylic acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with optical and concentration-dependent photocatalytic properties, Mater. Charact., 114(2016), p. 185. doi: 10.1016/j.matchar.2016.02.021
      [10]
      M.J. Cao, F. Wang, J.F. Zhu, X. Zhang, Y. Qin, and L. Wang, Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties, Mater. Lett., 192(2017), p. 1. doi: 10.1016/j.matlet.2017.01.051
      [11]
      T.T. Jiang, Y.Q. Wang, D.W. Meng, X.L. Wu, J.X. Wang, and J.Y. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Appl. Surf. Sci., 311(2014), p. 602. doi: 10.1016/j.apsusc.2014.05.116
      [12]
      M. Dhiman, R. Sharma, V. Kumar, and S. Singhal, Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures, Ceram. Int., 42(2016), No. 11, p. 12594. doi: 10.1016/j.ceramint.2016.04.115
      [13]
      A. Ulyankina, I. Leontyev, M. Avramenko, D. Zhigunov, and N. Smirnova, Large-scale synthesis of ZnO nanostructures by pulse electrochemical method and their photocatalytic properties, Mater. Sci. Semicond. Process., 76(2018), p. 7. doi: 10.1016/j.mssp.2017.12.011
      [14]
      X.Y. Shen, Y.J. Shi, H.M. Shao, Y. Liu, and Y.C. Zhai, Synthesis and photocatalytic degradation ability evaluation for rhodamine B of ZnO@SiO2 composite with flower-like structure, Water Sci. Technol., 80(2019), No. 10, p. 1986. doi: 10.2166/wst.2020.020
      [15]
      X.Y. Shen, H.M. Shao, Y. Liu, and Y.C. Zhai, Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore, J. Mater. Sci. Technol., 51(2020), p. 1. doi: 10.1016/j.jmst.2020.01.062
      [16]
      S.M. Lam, M.W. Kee, and J.C. Sin, Influence of PVP surfactant on the morphology and properties of ZnO micro/nanoflowers for dye mixtures and textile wastewater degradation, Mater. Chem. Phys., 212(2018), p. 35. doi: 10.1016/j.matchemphys.2018.03.002
      [17]
      H.S. Zhou, H.J. Zhang, Y. Wang, Y. Miao, L.B. Gu, and Z. Jiao, Self-assembly and template-free synthesis of ZnO hierarchical nanostructures and their photocatalytic properties, J. Colloid Interface Sci., 448(2015), p. 367. doi: 10.1016/j.jcis.2015.02.040
      [18]
      C.S. Lei, M. Pi, W. Zhou, Y.Q. Guo, F.G. Zhang, and J.Q. Qin, Synthesis of hierarchical porous flower-like ZnO–AlOOH structures and their applications in adsorption of congo red, Chem. Phys. Lett., 687(2017), p. 143. doi: 10.1016/j.cplett.2017.09.018
      [19]
      P. Dhatshanamurthi and M. Shanthi, Enhanced photocatalytic degradation of azo dye in aqueous solutions using Ba@Ag@ZnO nanocomposite for self-sensitized under sunshine irradiation, Int. J. Hydrogen Energy, 42(2017), No. 8, p. 5523. doi: 10.1016/j.ijhydene.2016.08.089
      [20]
      P.Y. Gong, B.S. Li, X.L. Kong, M. Shakeel, J.J. Liu, and S.L. Zuo, Hybriding hierarchical zeolite with Pt nanoparticles and graphene: Ternary nanocomposites for efficient visible-light photocatalytic degradation of methylene blue, Microporous Mesoporous Mater., 260(2018), p. 180. doi: 10.1016/j.micromeso.2017.10.029
      [21]
      A. Raza, H.L. Shen, A.A. Haidry, and S.S. Cui, Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: Advanced photocatalytic application, Appl. Surf. Sci., 488(2019), p. 887. doi: 10.1016/j.apsusc.2019.05.210
      [22]
      J. Liu, P.L. Wang, W.Q. Qu, H.R. Li, L.Y. Shi, and D.S. Zhang, Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene, Appl. Catal. B, 257(2019), art. No. 117880. doi: 10.1016/j.apcatb.2019.117880
      [23]
      Y.Q. Wang, T.T. Jiang, D.W. Meng, J. Yang, Y.C. Li, Q. Ma, and J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties, Appl. Surf. Sci., 317(2014), p. 414. doi: 10.1016/j.apsusc.2014.08.144
      [24]
      Q. Chen, Y.Q. Wang, M.Y. Zheng, H. Fang, and X. Meng, Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response, J. Mater. Sci. Mater. Electron., 29(2018), No. 23, p. 19757. doi: 10.1007/s10854-018-0101-2
      [25]
      A. Kar, J. Olszówka, S. Sain, S.R.I. Sloman, O. Montes, A. Fernández, S.K. Pradhan, and A.E.H. Wheatley, Morphological effects on the photocatalytic properties of SnO2 nanostructures, J. Alloys Compd., 810(2019), art. No. 151718. doi: 10.1016/j.jallcom.2019.151718
      [26]
      L.P. Wang, F. Zhang, S. Chen, and Z.H. Bai, One-pot synthesis and optical properties of In- and Sn-doped ZnO nanoparticles, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 455. doi: 10.1007/s12613-017-1426-1
      [27]
      J.C. Yao, M. Zhang, H.F. Yin, Y.T. Luo, and X.H. Liu, Improved photocatalytic activity of WO3/C3N4: By constructing an anchoring morphology with a Z-scheme band structure, Solid State Sci., 95(2019), art. No. 105926. doi: 10.1016/j.solidstatesciences.2019.06.015
      [28]
      Y. Bao, C. Wang, and J.Z. Ma, Morphology control of ZnO microstructures by varying hexamethylenetetramine and trisodium citrate concentration and their photocatalytic activity, Mater. Des., 101(2016), p. 7. doi: 10.1016/j.matdes.2016.03.158
      [29]
      S.M. Mousavi, A.R. Mahjoub, and R. Abazari, Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation, J. Mol. Liq., 242(2017), p. 512. doi: 10.1016/j.molliq.2017.07.050
      [30]
      T.V.A. Kusumam, T. Panakkal, T. Divya, M.P. Nikhila, M. Anju, K. Anas, and N.K. Renuka, Morphology controlled synthesis and photocatalytic activity of zinc oxide nanostructures, Ceram. Int., 42(2016), No. 3, p. 3769. doi: 10.1016/j.ceramint.2015.11.025
      [31]
      J.X. Zhan, H.X. Dong, Y. Liu, Y.L. Wang, Z.H. Chen, and L. Zhang, A novel synthesis and excellent photodegradation of flower-like ZnO hierarchical microspheres, CrystEngComm, 15(2013), No. 47, p. 10272. doi: 10.1039/c3ce41754a
      [32]
      N. Rana, S. Chand, and A.K. Gathania, Synthesis and characterization of flower-like ZnO structures and their applications in photocatalytic degradation of rhodamine B dye, J. Mater. Sci. Mater. Electron., 27(2016), No. 3, p. 2504. doi: 10.1007/s10854-015-4051-7
      [33]
      Y.Q. Wang, Q. Ma, H.X. Jia, and Z.S. Wang, One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization, Ceram. Int., 42(2016), No. 9, p. 10751. doi: 10.1016/j.ceramint.2016.03.200
      [34]
      X.Z. Lv, X.C. Liu, Q.M. Sun, Y.Q. Wang, and B. Yan, Growth and optical properties of hierarchical flower-like ZnO nanostructures, Ceram. Int., 43(2017), No. 3, p. 3306. doi: 10.1016/j.ceramint.2016.11.168
      [35]
      S.M. Chang, P.H. Lo, and C.T. Chang, Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals, Appl. Catal. B, 91(2009), No. 3-4, p. 619. doi: 10.1016/j.apcatb.2009.06.035
      [36]
      Q.J. Xiang, J.G. Yu, and P.K. Wong, Quantitative characterization of hydroxyl radicals produced by various photocatalysts, J. Colloid Interface Sci., 357(2011), No. 1, p. 163. doi: 10.1016/j.jcis.2011.01.093
      [37]
      Y. Zhang, J.B. Zhou, Z. Li, and Q.Q. Feng, Photodegradation pathway of rhodamine B with novel Au nanorods@ZnO microspheres driven by visible light irradiation, J. Mater. Sci., 53(2018), No. 5, p. 3149. doi: 10.1007/s10853-017-1779-x
      [38]
      X.Y. Zhang, J.Q. Qin, R.R. Hao, L.M. Wang, X. Shen, R.C. Yu, S. Limpanart, M.Z. Ma, and R.P. Liu, Carbon-doped ZnO nanostructures facile synthesis and visible light photocatalytic applications, J. Phys. Chem. C, 119(2015), No. 35, p. 20544. doi: 10.1021/acs.jpcc.5b07116

    Catalog


    • /

      返回文章
      返回