留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 12
Dec.  2020

图(9)

数据统计

分享

计量
  • 文章访问数:  2733
  • HTML全文浏览量:  615
  • PDF下载量:  58
  • 被引次数: 0
Shi-yuan Liu, Yu-lan Zhen, Xiao-bo He, Li-jun Wang, and Kuo-chih Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1678-1686. https://doi.org/10.1007/s12613-020-2140-y
Cite this article as:
Shi-yuan Liu, Yu-lan Zhen, Xiao-bo He, Li-jun Wang, and Kuo-chih Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1678-1686. https://doi.org/10.1007/s12613-020-2140-y
引用本文 PDF XML SpringerLink
研究论文

熔盐电解法从模拟的氯化钒渣中回收和分离铁和锰

  • Research Article

    Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis

    + Author Affiliations
    • Tailings from the vanadium extraction process are discarded each year as waste, which contain approximately 30wt% of Fe. In our previous work, we extracted Fe and Mn from vanadium slag, and Fe and Mn existed in the form of FeCl2 and MnCl2 after chlorination by NH4Cl to achieve effective and green usage of waste containing Fe and Mn. In this work, square wave voltammetry (SWV) and cyclic voltammetry (CV) were applied to investigate the electrochemical behaviors of Fe2+ and Mn2+ in NaCl–KCl melt at 800°C. The reduction processes of Fe2+ and Mn2+ were found to involve one step. The diffusion coefficients of FeCl2 and MnCl2 in molten salt of eutectic mixtures NaCl–KCl molten salt were measured. The electrodeposition of Fe and Mn were performed using two electrodes at a constant cell voltage. The Mn/Fe mass ratio of the electrodeposited product in NaCl–KCl–2.13wt%FeCl2–1.07wt%MnCl2 was 0.0625 at 2.3 V. After the electrolysis of NaCl–KCl–2.13wt%FeCl2–1.07wt%MnCl2 melted at 2.3 V, the electrolysis was again started under 3.0 V and the Mn/Fe mass ratio of the electrodeposited product was 36.4. This process provides a novel method to effectively separate Fe and Mn from simulated chlorinated vanadium slag.

    • loading
    • [1]
      M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, and E. Vahidi, Leaching of vanadium from LD converter slag using sulfuric acid, Hydrometallurgy, 102(2010), No. 1-4, p. 14. doi: 10.1016/j.hydromet.2010.01.006
      [2]
      Q.B. Song, J.H. Li, and X.L. Zeng, Minimizing the increasing solid waste through zero waste strategy, J. Cleaner Prod., 104(2015), p. 199. doi: 10.1016/j.jclepro.2014.08.027
      [3]
      T. Jiang, J. Wen, M. Zhou, and X.X. Xue, Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag, J Alloys Compd., 742(2018), p. 402. doi: 10.1016/j.jallcom.2018.01.201
      [4]
      X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1860. doi: 10.1016/S1003-6326(11)60942-4
      [5]
      H.Y. Li, H.X. Fang, K. Wang, W. Zhou, Z. Yang, X.M. Yan, W.S. Ge, Q.W. Li, and B. Xie, Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching, Hydrometallurgy, 156(2015), p. 124. doi: 10.1016/j.hydromet.2015.06.003
      [6]
      G. Wang, J. Diao, L. Liu, M. Li, H.Y. Li, G. Li, and B. Xie, Highly efficient utilization of hazardous vanadium extraction tailings containing high chromium concentrations by carbothermic reduction, J. Cleaner Prod., 237(2019), art. No. 117832. doi: 10.1016/j.jclepro.2019.117832
      [7]
      X.S. Li and B. Xie, Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 595. doi: 10.1007/s12613-012-0600-8
      [8]
      J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Multistage utilization process for the gradient-recovery of V, Fe and Ti from vanadium-bearing converter slag, J. Hazard. Mater., 336(2017), p. 1. doi: 10.1016/j.jhazmat.2017.04.060
      [9]
      S.N. Wang, H. Du, S.L. Zheng, B. Liu, H. Yan, and Y. Zhang, New technology from sodium vanadate to vanadium oxide by calcification and carboninztion-ammonium process, CIESC J., 68(2017), No. 7, p. 2781.
      [10]
      J.Y. Xiang, Q.Y. Huang, W. Lv, G.S. Pei, X.W. Lv, and C.G. Bai, Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment, J. Hazard. Mater., 357(2018), p. 128. doi: 10.1016/j.jhazmat.2018.05.064
      [11]
      G. Wang, M.M. Lin, J. Diao, H.Y. Li, B. Xie, and G. Li, Novel strategy for green comprehensive utilization of vanadium slag with high-content chromium, ACS Sustainable Chem. Eng., 7(2019), No. 21, p. 18133. doi: 10.1021/acssuschemeng.9b05226
      [12]
      E. Ma, R.X. Lu, and Z.M. Xu, An efficient rough vacuum-chlorinated separation method for the recovery of indium from waste liquid crystal display panels, Green Chem., 14(2012), No. 12, p. 3395. doi: 10.1039/c2gc36241d
      [13]
      G.C. Du, C.L. Fan, H.T. Yang, and Q.S. Zhu, Selective extraction of vanadium from pre-oxidized vanadium slag by carbochlorination in fluidized bed reactor, J. Cleaner Prod., 237(2019), art. No. 117765. doi: 10.1016/j.jclepro.2019.117765
      [14]
      Y. Sun, Comprehensive Utilization of Vanadium-bearing Titanomagnetite with Extracting Vanadium by Selective Chlorination Technology [Dissertation], Northeastern University, Shenyang, 2015, p. 61.
      [15]
      S.Y. Liu, S.J. Li, S. Wu, L.J. Wang, and K.C. Chou, A novel method for vanadium slag comprehensive utilization to synthesize Zn–Mn ferrite and Fe–V–Cr alloy, J. Hazard. Mater., 354(2018), p. 99. doi: 10.1016/j.jhazmat.2018.04.061
      [16]
      S.Y. Liu, L.J. Wang, and K.C. Chou, Selective chlorinated extraction of iron and manganese from vanadium slag and their application to hydrothermal synthesis of MnFe2O4, ACS Sustainable Chem. Eng., 5(2017), No. 11, p. 10588. doi: 10.1021/acssuschemeng.7b02573
      [17]
      S.Y. Liu, L.J. Wang, K.C. Chou, and R.V. Kumar, Electrolytic preparation and characterization of VCr alloys in molten salt from vanadium slag, J. Alloys Compd., 803(2019), p. 875. doi: 10.1016/j.jallcom.2019.06.366
      [18]
      S.Y. Liu, L.J. Wang, and K.C. Chou, A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis, Ind. Eng. Chem. Res., 55(2016), No. 50, p. 12962. doi: 10.1021/acs.iecr.6b03682
      [19]
      Y.B. Zhang, M.H. Du, B.B. Liu, Z.J. Su, G.H. Li, and T. Jiang, Separation and recovery of iron and manganese from high-iron manganese oxide ores by reduction roasting and magnetic separation technique, Sep. Sci. Technol., 52(2017), No. 7, p. 1321. doi: 10.1080/01496395.2017.1284864
      [20]
      A.B. Suchkov, T.N. Ermakova, L.V. Ryumina, and Z.A. Tubyshkina, On the production of iron powder by electrolysis of ore concentrates in fused salts: Direct iron production and powder metallurgy, Metallurgiya, 1974, No. 1, p. 148.
      [21]
      S. Licht and B.H. Wang, High solubility pathway for the carbon dioxide free production of iron, Chem. Commun., 46(2010), No. 37, p. 7004. doi: 10.1039/c0cc01594f
      [22]
      G.M. Haarberg, O.S. Burheim, H. Karoliussen, E. Kvalheim, A.M. Martinez, T. Murakami, S. Pietrzyk, and D.J. Zhao, Middle Temperature Electrolysis for the Production of Iron in Molten Salts, Project report, Norwegian University of Science and Technology, Trondheim, 2006.
      [23]
      G.M. Haarberg, E. Kvalheim, and S. Rolseth, Electrochemical behaviour of dissolved iron species in molten salts, [in] Proceedings of The Electrochemical Society, ECS Proceedings Volumes, Vol. 2004-24, Honolulu, 2004, p. 990.
      [24]
      G.M. Haarberg, E. Kvalheim, S. Rolseth, T. Murakami, S. Pietrzyk, and S.L. Wang, Electrodeposition of iron from molten mixed chloride/fluoride electrolytes, ECS Trans., 3(2007), No. 35, p. 341. doi: 10.1149/1.2798677
      [25]
      Y. Castrillejo, A.M. Martínez, M. Vega, E. Barrado, and G. Picard, Electrochemical study of the properties of iron ions in ZnCl2 + 2NaCl melt at 450°C, J. Electroanal. Chem., 397(1995), No. 1-2, p. 139. doi: 10.1016/0022-0728(95)04151-9
      [26]
      S.Z. Duan, P. Dudley, and D. Inman, Voltammetric studies of iron in molten MgCl2+NaCl+KCl: Part I. The reduction of Fe(Ⅱ), J. Electroanal. Chem. Interfacial Electrochem., 142(1982), No. 1-2, p. 215. doi: 10.1016/S0022-0728(82)80017-X
      [27]
      D. Inman, J.C. Legey, and R. Spencer, I, A chronopotentiometric study of iron in LiCl–KCl, J. Appl. Electrochem., 8(1978), No. 3, p. 269. doi: 10.1007/BF00616430
      [28]
      B. Khalaghi, E. Kvalheim, M. Tokushige, L.D. Teng, S. Seetharaman, and G.M. Haarberg, Electrochemical behaviour of dissolved iron chloride in KCl+LiCl+NaCl melt at 550°C, ECS Trans., 64(2014), No. 4, p. 301. doi: 10.1149/06404.0301ecst
      [29]
      S.J. Xiao, W. Liu, and L. Gao, Cathodic process of manganese (II) in NaCl–KCl melt, Ionics, 22(2016), No. 12, p. 2387. doi: 10.1007/s11581-016-1778-y
      [30]
      D. Quaranta, L. Massot, M. Gibilaro, E. Mendes, J. Serp, and P. Chamelot, Zirconium(IV) electrochemical behavior in molten LiF–NaF, Electrochim. Acta, 265(2018), p. 586. doi: 10.1016/j.electacta.2018.01.213
      [31]
      X.L. Zou, X.G. Lu, C.H. Li, and Z.F. Zhou, A direct electrochemical route from oxides to Ti–Si intermetallics, Electrochim. Acta, 55(2010), No. 18, p. 5173. doi: 10.1016/j.electacta.2010.04.032
      [32]
      J.S. Yao, L.T. Yang, and Z.H. Zhou, The cathodic process of Mn(II) in the molten magnesium electrolyte containing Fe(II), Min. Metall. Eng., 9(1989), No. 1, p. 51.
      [33]
      K. Ye, M.L. Zhang, Y. Chen, W. Han, Y.D. Yan, S.Q. Wei, and L.J. Chen, Study on the preparation of Mg–Li–Mn alloys by electrochemical codeposition from LiCl–KCl–MgCl2–MnCl2 molten salt, J. Appl. Electrochem., 40(2010), No. 7, p. 1387. doi: 10.1007/s10800-010-0106-x
      [34]
      Y.S. Yang, M.L. Zhang, W. Han, P.Y. Sun, B. Liu, H.L. Jiang, T. Jiang, S.M. Peng, M. Li, K. Ye, and Y.D. Yan, Selective electrodeposition of dysprosium in LiCl–KCl–GdCl3–DyCl3 melts at magnesium electrodes: Application to separation of nuclear wastes, Electrochim. Acta, 118(2014), p. 150. doi: 10.1016/j.electacta.2013.11.145

    Catalog


    • /

      返回文章
      返回