留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(8)

数据统计

分享

计量
  • 文章访问数:  3207
  • HTML全文浏览量:  509
  • PDF下载量:  62
  • 被引次数: 0
Jinglong Liang, Dongbin Wang, Le Wang, Hui Li, Weigang Cao, and Hongyan Yan, Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 473-478. https://doi.org/10.1007/s12613-020-2144-7
Cite this article as:
Jinglong Liang, Dongbin Wang, Le Wang, Hui Li, Weigang Cao, and Hongyan Yan, Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 473-478. https://doi.org/10.1007/s12613-020-2144-7
引用本文 PDF XML SpringerLink
研究论文

NaCl−CaCl2熔盐回收废旧锰酸锂电池中金属锰的电化学方法

  • 通讯作者:

    李慧    E-mail: lh@ncst.edu.cn

文章亮点

  • (1) 系统地研究了锰酸锂在熔盐电解过程中锰的还原规律。
  • (2) 探讨了熔盐体系对锰酸锂电解还原过程的影响。
  • (3) 总结并提出了熔盐电解回收废旧锰酸锂中金属锰的方法。
  • 750°C条件下NaCl−CaCl2熔融盐中直接电解还原LiMn2O4回收金属锰为废旧锂离子电池的回收提供了新的思路。采用电化学手段研究LiMn2O4在涂覆电极表面的还原过程,结果显示,锰酸锂的还原过程是分步进行的,还原过程为Mn(IV) → Mn(III) → Mn(II) → Mn;在电脱氧12 h条件下,0.5−3 V的产物为CaMn2O4、MnO、(MnO)x(CaO)1−x、Mn,电解电压达到电压在2.6 V时单质锰出现,增加电压可促进锰的脱氧进程。电脱氧随着三相界面的推进由外向芯部逐渐进行,当电压较大时会加快还原反应的动力学过程,并产生两个阶段的三相界面。

  • Research Article

    Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl−CaCl2 melts

    + Author Affiliations
    • A new method is proposed for the recovery of Mn via the direct electrochemical reduction of LiMn2O4 from the waste of lithium-ion batteries in NaCl−CaCl2 melts at 750°C. The results show that the LiMn2O4 reduction process by the electrochemical method on the coated electrode surface occurs in three steps: Mn(IV) → Mn(III) → Mn(II) → Mn. The products of this electro-deoxidation are CaMn2O4, MnO, (MnO)x(CaO)1−x, and Mn. Metal Mn appears when the electrolytic voltage increases to 2.6 V, which indicates that increasing the voltage may promote the deoxidation reaction process. With the advancement of the three-phase interline (3PI), electric deoxygenation gradually proceeds from the outer area of the crucible to the core. At high voltage, the kinetic process of the reduction reaction is accelerated, which generates double 3PIs at different stages.

    • loading
    • [1]
      P.Y. Guan, L. Zhou, Z.L. Yu, Y.D. Sun, Y.J. Liu, F.X. Wu, Y.F. Jiang, and D.W. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, J. Energy Chem., 43(2020), p. 220. doi: 10.1016/j.jechem.2019.08.022
      [2]
      Y.N. Xu, Y.Y. Dong, X. Han, X.F. Wang, Y.J. Wang, L.F. Jiao, and H.T. Yuan, Application for simply recovered LiCoO2 material as a high-performance candidate for supercapacitor in aqueous system, ACS Sustainable Chem. Eng., 3(2015), No. 10, p. 2435. doi: 10.1021/acssuschemeng.5b00455
      [3]
      G.L. Gao, X.M. Luo, X.Y. Lou, Y.G. Guo, R.J. Su, J. Guan, Y.S. Li, H. Yuan, J. Dai, and Z. Jiao, Efficient sulfuric acid-Vitamin C leaching system: Towards enhanced extraction of cobalt from spent lithium-ion batteries, J. Mater. Cycles Waste Manage., 21(2019), No. 4, p. 942. doi: 10.1007/s10163-019-00850-4
      [4]
      L. Li, Y.F. Bian, X.X. Zhang, Y. Yao, Q. Xue, E. Fan, F. Wu, and R.J Chen, A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries, Waste Manage., 85(2019), p. 437. doi: 10.1016/j.wasman.2019.01.012
      [5]
      M. Roshanfar, R. Golmohammadzadeh, and F. Rashchi. An environmentally friendly method for recovery of lithium and cobalt from spent lithium-ion batteries using gluconic and lactic acids, J. Environ. Chem. Eng, 7(2019), No. 1, art. No. 102794. doi: 10.1016/j.jece.2018.11.039
      [6]
      H. Setiawan, H. T. B. M. Petrus, and I. Perdan, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
      [7]
      X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, and H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step, Sep. Purif. Technol., 210(2019), p. 690. doi: 10.1016/j.seppur.2018.08.072
      [8]
      J.F. Xiao, J. Li, Z.Q. Xu, Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, J. Hazard. Mater., 338(2017), p. 124. doi: 10.1016/j.jhazmat.2017.05.024
      [9]
      W.Y. Wang, C.H. Yen, J.L. Lin, and R.B. Xu, Recovery of high-purity metallic cobalt from lithium nickel manganese cobalt oxide (NMC)-type Li-ion battery, J. Mater. Cycles Waste Manage., 21(2019), No. 2, p. 300. doi: 10.1007/s10163-018-0790-x
      [10]
      Q. Liang, H.F. Yue, S.F. Wang, S.Y. Yang, K. Lam, and X.H. Hou, Recycling and crystal regeneration of commercial used LiFePO4 cathode materials, Electrochim. Acta, 330(2020), art. No. 135323. doi: 10.1016/j.electacta.2019.135323
      [11]
      Y. Zhou, W. Shan, S.F. Wang, K. Lam, Q. Ru, F.M. Chen, and X.H. Hou, Recovery Li/Co from spent LiCoO2 electrode based on an aqueous dual-ion lithium-air battery, Electrochim. Acta, 332(2020), art. No. 135529. doi: 10.1016/j.electacta.2019.135529
      [12]
      G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361. doi: 10.1038/35030069
      [13]
      S.Q. Jiao and H.M. Zhu, Electrolysis of Ti2CO3 solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1-2, p. 243. doi: 10.1016/j.jallcom.2006.08.016
      [14]
      D.S. Maha Vishnu, N. Sanil, L. Shakila, R. Sudha, K.S. Mohandas, and K. Nagarajan, Electrochemical reduction of TiO2 powders in molten calcium chloride, Electrochim. Acta, 159(2015), p. 124. doi: 10.1016/j.electacta.2015.01.105
      [15]
      X.Y. Liu, M.L. Hu, C.G. Bai, and X.W. Lv, Effect of electrical conductivity and porosity of cathode on electro-deoxidation process of ilmenite concentrate, Rare Met. Mater. Eng., 46(2017), No. 5, p. 1176. doi: 10.1016/S1875-5372(17)30132-7
      [16]
      H.D. Jiao, Q.Y. Wang, J.B. Ge, H.B. Sun, and S.Q. Jiao, Electrochemical synthesis of Ti5Si3 in CaCl2 melt, J. Alloys Compd., 582(2014), p. 146. doi: 10.1016/j.jallcom.2013.08.050
      [17]
      X. Yang, L. Ji, X.L. Zou, T. Lim, J. Zhao, E.T. Yu, and A.J. Bard, Toward cost-effective manufacturing of silicon solar cells: electrodeposition of high-quality Si films in a CaCl2-based melts, Angew. Chem., 56(2017), No. 47, p. 15078. doi: 10.1002/anie.201707635
      [18]
      Y. Sakanaka, and T. Goto, Electrodeposition of Si film on Ag substrate in molten LiF–NaF–KF directly dissolving SiO2, Electrochim. Acta, 164(2015), p. 139. doi: 10.1016/j.electacta.2014.12.159
      [19]
      Y. Sakanaka, A. Murata, T. Goto, and K. Hachiya, Electrodeposition of porous Si film from SiO2 in molten BaCl2−CaCl2−NaCl, J. Alloys Compd., 695(2017), p. 2131. doi: 10.1016/j.jallcom.2016.11.056
      [20]
      W. Weng, M.Y. Wang, X.Z. Gong, Z. Wang, D. Wang, and Z.C. Guo, Electrochemical reduction behavior of soluble CaTiO3 in Na3AlF6−AlF3 melt for the preparation of metal titanium, J. Electrochem. Soc., 164(2017), No. 9, p. D551. doi: 10.1149/2.0611709jes
      [21]
      L. Kartal, M. B. Daryal, G. K. Şireli, and S. Timur. One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258. doi: 10.1007/s12613-019-1867-9
      [22]
      W. Weng, M.Y. Wang, X.Z. Gong, Z.Wang, D. Wang, and Z.C. Guo, Direct electro-deposition of metallic chromium from K2CrO4 in the equimolar CaCl2−KCl melts and its reduction mechanism, Electrochim. Acta, 212(2016), p. 162. doi: 10.1016/j.electacta.2016.06.142
      [23]
      L. Wang, W.Z. Liu, J.P. Hu, Q. Liu, H.R Yue, B. Liang, G.Q. Zhang, D.M. Luo, H.P. Xie, and C. Li, Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3, Chin. J. Chem. Eng., 26(2018), No. 3, p. 583. doi: 10.1016/j.cjche.2017.06.012
      [24]
      X.L. Ge, X.D. Wang, and S. Seetharaman, Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl, Electrochim. Acta, 54(2009), No. 18, p. 4397. doi: 10.1016/j.electacta.2009.03.015
      [25]
      L. Kartal and S. Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 992. doi: 10.1007/s12613-019-1821-x
      [26]
      B.L. Zhang, H.W. Xie, B.H. Lu, X. Chen, P.F. Xing, J.K. Qu, Q.S. Song, and H.Y. Yin, A green electrochemical process to recover Co and Li from spent LiCoO2-based batteries in meltss, ACS Sustainable Chem. Eng., 7(2019), No. 15, p. 13391. doi: 10.1021/acssuschemeng.9b02657
      [27]
      H. Li, D.B. Wang, J.L. Liang, H.Y. Yan, Z.Y. Cai, and R.G. Reddy, Electrochemical mechanism for the preparation of Fe−Si alloys by melts electrodeposition, Int. J. Chem. React. Eng., 18(2019), No. 2, art. No. 20190112.
      [28]
      J.L. Liang, H. Li, D.X. Huo, H.Y. Yan, R.G. Reddy, L.G. Wang, and L.Q. Wang, Electrochemical characteristics of TiO2 in NaCl−KCl−NaF melts system, Ionics, 24(2018), No. 10, p. 3221. doi: 10.1007/s11581-018-2503-9
      [29]
      H. Li, L.S. Zhang, J.L. Liang, R.G. Reddy, H.Y. Yan, and Y.H. Yin, Electrochemical Behavior of Fe3O4 in NaCl−CaCl2 Melts, Int. J. Chem. React. Eng., 17(2019), No. 10, art. No. 0190017.
      [30]
      G.Z. Chen and D.J. Fray, Understanding the electro-reduction of metal oxides in molten salts, [in] Light Metals Symposium, Charlotte, NC, 2004, p. 881.
      [31]
      W. Weng, M.Y. Wang, X.Z. Gong, and Z.C. Guo, Thermodynamic analysis on the direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis, Chin. J. Chem. Eng., 24(2016), No. 5, p. 671. doi: 10.1016/j.cjche.2016.01.006
      [32]
      D.Y. Tang, H.Y. Yin, W. Xiao, H. Zhu, X.H. Mao, and D.H. Wang, Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3–Na2CO3 using an inert anode, J. Electroanal. Chem., 689(2013), p. 109. doi: 10.1016/j.jelechem.2012.11.027

    Catalog


    • /

      返回文章
      返回