留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(14)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  3136
  • HTML全文浏览量:  511
  • PDF下载量:  94
  • 被引次数: 0
Yuhui Liu, Meng Tang, Shuang Zhang, Yuling Lin, Yingcai Wang, Youqun Wang, Ying Dai, Xiaohong Cao, Zhibin Zhang, and Yunhai Liu, U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 479-489. https://doi.org/10.1007/s12613-020-2154-5
Cite this article as:
Yuhui Liu, Meng Tang, Shuang Zhang, Yuling Lin, Yingcai Wang, Youqun Wang, Ying Dai, Xiaohong Cao, Zhibin Zhang, and Yunhai Liu, U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 479-489. https://doi.org/10.1007/s12613-020-2154-5
引用本文 PDF XML SpringerLink
研究论文

熔盐电解法制备PPy/3R-MoS2纳米片及对U(VI)吸附效果的研究

  • 通讯作者:

    柳玉辉    E-mail: liuyuhui@ecut.edu.cn

    刘云海    E-mail: walton_liu@163.com

文章亮点

  • (1) 高温电化学方法具有介电弛豫效应,且通过调控界面电势差和温度对MoS2层间范德华力产生快速冲击,有利于不同堆垛方式的形成,解决了传统方法加热时间长和晶格化程度弱等问题。
  • (2) 以聚吡咯通过原位聚合与二硫化钼复合,所形成的复合材料具有更多的活性位点和更高的选择性,在协同作用下,复合材料吸附U(VI)的性能得到了提高。
  • (3) 高温电化学方法具有低成本、高纯度、高效率高量产的特点和优势。
  • 为提高水溶液中铀的分离能力,本文采用熔盐电解法制备3R-MoS2纳米片,并用聚吡咯(PPy)对其进行改性,采用水热法合成了复合纳米吸附剂(PPy/3R-MoS2)。在700 K温度下,以Mo丝为阴极,C棒为阳极,调节恒电流电位仪电流大小为2 A,对KCl–NaCl–Na2MoO4–KSCN熔盐体系进行恒电流电解1 h。待电解产物冷却至室温后,用去离子水洗涤过滤,在60℃下真空干燥2 h,得到3R-MoS2纳米片。将制备的3R-MoS2纳米片(1.0 g)分散在50 mL含PPy(2.34 mL)的去离子水中,加入10 mL(1 mol/L) FeCl3溶液,在10℃下放置24 h。将反应后的样品在5000 r/min下离心20 min,用无水乙醇和去离子水分散两次后,在70°C下真空干燥2 h,得到PPy/3R-MoS2纳米片。通过批次吸附实验,探究了制备的纳米片在不同pH、反应时间、U(VI)初始浓度和温度条件下对U(VI)的吸附效果,并利用SEM、HRTEM、XRD、FTIR和XPS对其进行表征。在不同实验条件下,与3R-MoS2和聚吡咯(PPy)相比,复合纳米吸附剂(PPy/3R-MoS2)对U(VI)的吸附能力增强。当U(VI)初始浓度为80–100 mg/L时, PPy、3R-MoS2和PPy/3R-MoS2的吸附均达到平衡,最大吸附量分别为30.9、58.7和200.4 mg/g。XPS和FTIR分析阐明了其吸附机理:1) 带负电的PPy/3R-MoS2纳米片通过静电吸引捕获UO22+);2) 裸露的C,N,Mo,S原子通过配位作用与U(VI)络合;3) 络合物中的Mo将吸附的U(VI)部分还原为U(IV),再生了吸附位点,从而连续吸附U(VI)。具有高吸附容量和化学稳定性的PPy/3R-MoS2复合材料的设计为放射性核素的去除提供了新的方向。
  • Research Article

    U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method

    + Author Affiliations
    • To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electrolysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R-MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy; the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted $ {\rm{UO}}_2^{2 + } $ by an electrostatic interaction; (2) exposed C, N, Mo, and S atoms complexed with U(VI) through coordination; (3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continuously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direction for the removal of radionuclide.
    • loading
    • Supplementary Informations12613-020-2154-5.docx
    • [1]
      B.G. Gebreyohannes, V. del Rosario Alberto, A. Yimam, G. Woldetinsae, and B. Tadesse, Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 727. doi: 10.1007/s12613-017-1456-8
      [2]
      Y. Liu, Z.P. Zhao, D.Z. Yuan, Y. Wang, Y. Dai, Y.A. Zhu, and J.W. Chew, Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption, Appl. Surf. Sci., 466(2019), p. 893. doi: 10.1016/j.apsusc.2018.10.097
      [3]
      Z.B. Zhang, Z.M. Dong, X.X. Wang, Y. Dai, X.H. Cao, Y.Q. Wang, R. Hua, H.T. Feng, J.R. Chen, Y.H. Liu, B.W. Hu, and X.K. Wang, Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies, Chem. Eng. J., 370(2019), p. 1376. doi: 10.1016/j.cej.2019.04.012
      [4]
      C. Jiang, Y. Liu, D.Z. Yuan, Y. Wang, J.B. Liu, and J.W. Chew, Investigation of the high U(VI) adsorption properties of phosphoric acid-functionalized heteroatoms-doped carbon materials, Solid State Sci., 104(2020), art. No. 106248. doi: 10.1016/j.solidstatesciences.2020.106248
      [5]
      T.Q. Yin, L. Chen, Y. Xue, Y.H. Zheng, X.P. Wang, Y.D. Yan, M.L. Zhang, G.L. Wang, F. Gao, and M. Qiu, Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl–KCl melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1657. doi: 10.1007/s12613-020-2112-2
      [6]
      Rashad, G.M. M.R. Mahmoud, and M.A. Soliman. Combination of coprecipitation and foam separation processes for rapid recovery and preconcentration of cesium radionuclides from water systems, Process Saf. Environ. Prot., 130(2019), p. 163. doi: 10.1016/j.psep.2019.08.007
      [7]
      W. Xiao, P. Zhou, X.H. Mao, and D.H. Wang, Ultrahigh aniline-removal capacity of hierarchically structured layered manganese oxides: Trapping aniline between interlayers, J. Mater. Chem. A, 3(2015), No. 16, p. 8676. doi: 10.1039/C5TA01305D
      [8]
      L. Lei, D.L. Huang, G.M. Zeng, M. Cheng, D.N. Jiang, C.Y. Zhou, S. Chen, and W.J. Wang, A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties, Coord. Chem. Rev., 399(2019), art. No. 213020. doi: 10.1016/j.ccr.2019.213020
      [9]
      Y. Kou, L. Zhang, B. Liu, L. Zhu, and T. Duan, Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution, J. Radioanal. Nucl. Chem., 323(2020), No. 1, p. 641. doi: 10.1007/s10967-019-06970-3
      [10]
      M.A. Macchione, R. Mendoza-Cruz, L. Bazán-Diaz, J.J. Velázquez-Salazar, U. Santiago, M.J. Arellano-Jiménez, J.F. Perez, M. José-Yacamán, and J.E. Samaniego-Benitez, Electron microscopy study of the carbon-induced 2H–3R–1T phase transition of MoS2, New J. Chem., 44(2020), No. 4, p. 1190. doi: 10.1039/C9NJ03850G
      [11]
      J.M. Luo, K.X. Fu, M. Sun, K. Yin, D. Wang, X. Liu, and J.C. Crittenden, Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38789. doi: 10.1021/acsami.9b14019
      [12]
      Y.X. Yao, K.L. Ao, P. Lv, and Q.F. Wei, MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction, Nanomaterials, 9(2019), No. 6, art. No. 844. doi: 10.3390/nano9060844
      [13]
      S. Dhar, V. Kranthi Kumar, T.H. Choudhury, S.A. Shivashankar, and S. Raghavan, Chemical vapor deposition of MoS2 layers from Mo–S–C–O–H system: Thermodynamic modeling and validation, Phys. Chem. Chem. Phys., 18(2016), No. 22, p. 14918. doi: 10.1039/C6CP01617K
      [14]
      Y.X. Zhang, S.X. Wang, H.H. Yu, H.J. Zhang, Y.X. Chen, L.M. Mei, A. Di Lieto, M. Tonelli, and J.Y. Wang, Atomic-layer molybdenum sulfide optical modulator for visible coherent light, Sci. Rep., 5(2015), art. No. 11342. doi: 10.1038/srep11342
      [15]
      A. Dash, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Molten salt shielded synthesis of oxidation prone materials in air, Nat. Mater., 18(2019), No. 5, p. 465. doi: 10.1038/s41563-019-0328-1
      [16]
      W. Weng, J.R. Yang, J. Zhou, D. Gu, and W. Xiao, Template-free electrochemical formation of silicon nanotubes from silica, Adv. Sci., 7(2020), No. 17, art. No. 2001492. doi: 10.1002/advs.202001492
      [17]
      D. Pang, W. Weng, J. Zhou, D. Gu, and W. Xiao, Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts, J. Energy Chem., 55(2021), p. 102. doi: 10.1016/j.jechem.2020.06.072
      [18]
      W. Weng, S.B. Wang, W. Xiao, and X.W. Lou, Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction, Adv. Mater., 32(2020), No. 29, art. No. 2001560. doi: 10.1002/adma.202001560
      [19]
      W. Weng, L.Z. Tang, and W. Xiao, Capture and electro-splitting of CO2 in molten salts, J. Energy Chem., 28(2019), p. 128. doi: 10.1016/j.jechem.2018.06.012
      [20]
      E. Ahmadi, R.O. Suzuki, T. Kikuchi, T. Kaneko, and Y. Yashima, Towards a sustainable technology for production of extra-pure Ti metal: Electrolysis of sulfurized Ti(C,N) in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1635. doi: 10.1007/s12613-020-2162-5
      [21]
      Y.P. Dou, D.Y. Tang, H.Y. Yin, and D.H. Wang, Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1695. doi: 10.1007/s12613-020-2169-y
      [22]
      D.H. Tian, Z.C. Han, M.Y. Wang, and S.Q. Jiao, Direct electrochemical N-doping to carbon paper in molten LiCl–KCl–Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1687. doi: 10.1007/s12613-020-2026-z
      [23]
      H.J. Luo, Y. Xue, Y.H. Zheng, Y.D. Yan, F.Q. Ma, M.L. Zhang, T.Q. Yin, F. Gao, and M. Qiu, Controllable preparation of carbon materials with different morphologies assisted by molten salt electrolysis, ECS J. Solid State Sci. Technol., 8(2019), No. 12, p. M122. doi: 10.1149/2.0181912jss
      [24]
      R. Jiang, L. Pi, B.W. Deng, L.Y. Hu, X.L. Liu, J.X. Cui, X.H. Mao, and D.H. Wang, Electric field-driven interfacial alloying for in situ fabrication of nano-Mo2C on carbon fabric as cathode toward efficient hydrogen generation, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38606. doi: 10.1021/acsami.9b11253
      [25]
      Y.H. Liu, X.Y. Jing, M.L. Zhang, Y.D. Yan, D.B. Ji, P. Li, H.B. Xu, and Y. Xue, Electrochemical synthesis and tribological properties of flower-like and sheet-like MoS2 in LiCl−KCl−(NH4)6Mo7O24–KSCN melt, Electrochimica Acta, 271(2018), p. 252. doi: 10.1016/j.electacta.2018.03.015
      [26]
      Y.H. Liu, C. Fang, S. Zhang, W.H. Zhong, Q.L. Wei, Y.C. Wang, Y. Dai, Y.Q. Wang, Z.B. Zhang, and Y.H. Liu, Effective adsorption of uranyl ions with different MoS2-exposed surfaces in aqueous solution, Surf. Interfaces, 18(2020), art. No. 100409. doi: 10.1016/j.surfin.2019.100409
      [27]
      M. Bhaumik, A. Maity, V.V. Srinivasu, and M.S. Onyango, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 190(2011), No. 1-3, p. 381. doi: 10.1016/j.jhazmat.2011.03.062
      [28]
      Y.L. Xu, J.Y. Chen, R. Chen, P.L. Yu, S. Guo, and X.F. Wang, Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent, Water Res., 160(2019), p. 148. doi: 10.1016/j.watres.2019.05.055
      [29]
      C.N. Zhong, S.Z. Su, L. Xu, Q. Liu, H.S. Zhang, P.P. Yang, M.L. Zhang, X.F. Bai, and J. Wang, Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater, Colloids Surf. A, 562(2019), p. 329. doi: 10.1016/j.colsurfa.2018.11.029
      [30]
      X. Lu, Y.W. Lin, H.F. Dong, W.H. Dai, X. Chen, X.H. Qu, and X.J. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction, Sci. Rep., 7(2017), art. No. 42309. doi: 10.1038/srep42309
      [31]
      K. Chang, X. Hai, H. Pang, H.B. Zhang, L. Shi, G.G. Liu, H.M. Liu, G.X. Zhao, M. Li, and J.H. Ye, Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution, Adv. Mater., 28(2016), No. 45, p. 10033. doi: 10.1002/adma.201603765
      [32]
      C.F. Zhong, W. Weng, X.X. Liang, D. Gu, and W. Xiao, One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation, Appl. Surf. Sci., 507(2020), art. No. 145072. doi: 10.1016/j.apsusc.2019.145072
      [33]
      J. van Baren, G.H. Ye, J.A. Yan, Z.P. Ye, P. Rezaie, P. Yu, Z. Liu, R. He, and C.H. Lui, Stacking-dependent interlayer phonons in 3R and 2H MoS2, 2D Mater., 6(2019), No. 2, art. No. 025022. doi: 10.1088/2053-1583/ab0196
      [34]
      P. Manivasagan, N. Quang Bui, S. Bharathiraja, M. Santha Moorthy, Y.O. Oh, K. Song, H. Seo, M. Yoon, and J. Oh, Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer, Sci. Rep., 7(2017), p. 43593. doi: 10.1038/srep43593
      [35]
      X.C. Li, G.L. Jiang, G.H. He, W.J. Zheng, Y. Tan, and W. Xiao, Preparation of porous PPy–TiO2 composites: Improved visible light photoactivity and the mechanism, Chem. Eng. J., 236(2014), p. 480. doi: 10.1016/j.cej.2013.10.057
      [36]
      S. Veli, A. Arslan, Ç. Gülümser, E. Topkaya, H. Kurtkulak, Ş. Zeybek, A. Dimoglo, and M. İşgören, Advanced treatment of pre-treated commercial laundry wastewater by adsorption process: Experimental design and cost evaluation, J. Ecol. Eng., 20(2019), No. 10, p. 165. doi: 10.12911/22998993/113136
      [37]
      D. Tan, M. Willatzen, and Z.L. Wang, Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures, Nano Energy, 56(2019), p. 512. doi: 10.1016/j.nanoen.2018.11.073
      [38]
      D. Xie, D.H. Wang, W.J. Tang, X.H. Xia, Y.J. Zhang, X.L. Wang, C.D. Gu, and J.P. Tu, Binder-free network-enabled MoS2–PPY–rGO ternary electrode for high capacity and excellent stability of lithium storage, J. Power Sources, 307(2016), p. 510. doi: 10.1016/j.jpowsour.2016.01.024
      [39]
      M.A. Salem, R.G. Elsharkawy, and M.F. Hablas, Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies, Eur. Polym. J., 75(2016), p. 577. doi: 10.1016/j.eurpolymj.2015.12.027
      [40]
      E. Fourest and J.C. Roux, Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH, Appl. Microbiol. Biotechnol., 37(1992), No. 3, p. 399. doi: 10.1007/BF00211001
      [41]
      W.P. Li, X.Y. Han, X.Y. Wang, Y.Q. Wang, W.X. Wang, H. Xu, T.S. Tan, W.S. Wu, and H.X. Zhang, Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite, Chem. Eng. J., 279(2015), p. 735. doi: 10.1016/j.cej.2015.05.060
      [42]
      S. Sadeghi, H. Azhdari, H. Arabi, and A.Z. Moghaddam, Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples, J. Hazard. Mater., 215-216(2012), p. 208. doi: 10.1016/j.jhazmat.2012.02.054
      [43]
      D.S. Karpovich and G.J. Blanchard, Direct measurement of the adsorption kinetics of alkanethiolate self-assembled monolayers on a microcrystalline gold surface, Langmuir, 10(1994), No. 9, p. 3315. doi: 10.1021/la00021a066
      [44]
      S. Deng, C.X. Yu, J.F. Niu, J.B. Liao, and X.H. Liu, Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water, Chem. Eng. J., 392(2020), art. No. 123815. doi: 10.1016/j.cej.2019.123815

    Catalog


    • /

      返回文章
      返回