留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  3103
  • HTML全文浏览量:  975
  • PDF下载量:  61
  • 被引次数: 0
Masoud Sabzi, Amir Hayati Jozani, Farzad Zeidvandi, Majid Sadeghi,  and Saeid Mersagh Dezfuli, Effect of 2-mercaptobenzothiazole concentration on sour-corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 271-282. https://doi.org/10.1007/s12613-020-2156-3
Cite this article as:
Masoud Sabzi, Amir Hayati Jozani, Farzad Zeidvandi, Majid Sadeghi,  and Saeid Mersagh Dezfuli, Effect of 2-mercaptobenzothiazole concentration on sour-corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 271-282. https://doi.org/10.1007/s12613-020-2156-3
引用本文 PDF XML SpringerLink
研究论文

2-巯基苯并噻唑浓度对API X60管线钢酸蚀行为的影响:电化学参数及吸附机理

  • 通讯作者:

    Masoud Sabzi    E-mail: mas.metallurg88@gmail.com

  • 我们研究了2-巯基苯并噻唑浓度对API X60管线钢在25°C含H2S环境中和0、2.5、5.0、7.5和10.0 g/L的2-巯基苯并噻唑抑制剂条件下的酸腐蚀行为的影响。我们利用开路电位 (OCP)、动电位极化和电化学阻抗谱(EIS)测试来研究这种腐蚀行为,利用能量色散光谱和扫描电子显微镜来分析腐蚀产物。OCP 和动电位极化测试结果表明,2-巯基苯并噻唑降低了阳极和阴极的反应速度。关于抑制剂的吉布斯自由能的评估表明其值在−20 kJ·mol−1和−40 kJ·mol−1之间。因此,2-巯基苯并噻唑对API X60管线钢表面的吸附既是物理也是化学吸附,其中后者是自发的。此外,由于吉布斯自由能值为负,我们可以得出结论,2-巯基苯并噻唑在管线钢表面的吸附是自发发生的。EIS结果表明,随着2-巯基苯并噻唑抑制剂浓度的增加,API X60钢的耐腐蚀性能提高。对腐蚀产物的分析表明,其表面形成了硫化铁化合物。总之,结果表明,缓蚀剂浓度的增加导致腐蚀速率的降低和缓蚀效率的增加。此外,我们发现在含H2S的环境中API X60钢表面上的2-巯基苯并噻唑吸附行为遵循Langmuir吸附等温线并自发发生。

  • Research Article

    Effect of 2-mercaptobenzothiazole concentration on sour-corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism

    + Author Affiliations
    • We investigated the effect of ‎the 2-mercaptobenzothiazole concentration on the sour-corrosion behavior of API ‎X60 pipeline steel in an environment containing H2S at 25°C and in the presence of 0, 2.5, 5.0, 7.5, and 10.0 g/L of ‎2-mercaptobenzothiazole inhibitor. To examine this behavior, we conducted open-circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) tests. Energy dispersive spectroscopy and scanning electron microscopy were also used to analyze the corrosion products. The results of the OCP and potentiodynamic polarization tests revealed that ‎2-mercaptobenzothiazole reduces the speed of both the anodic and cathodic reactions. An assessment of the Gibbs free energy of the inhibitor (

      $ {\Delta G}_{\mathrm{a}\mathrm{d}\mathrm{s}}^{\ominus} $

      ) indicated that its value was less than −20 kJ·mol−1 and greater than −40 kJ·mol−1. Therefore, the adsorption of 2-mercaptobenzothiazole onto the surface of the API X60 pipeline steel occurs both physically and chemically, the latter of which is particularly intentional. In addition, as the

      $ {\Delta G}_{\mathrm{a}\mathrm{d}\mathrm{s}}^{\ominus} $

      value was negative, we could conclude that the adsorption of 2-mercaptobenzothiazole onto the surface of the pipeline steel occurs spontaneously. The EIS results indicate that with the increase in the 2-mercaptobenzothiazole inhibitor concentration, the corrosion resistance of API X60 steel increases. An analysis of the corrosion products revealed that iron sulfide compounds form on the surface. In summary, the results showed that an increase in the inhibitor concentration results in a decrease in the corrosion rate and an increase in inhibitory efficiency. Additionally, we found that the 2-mercaptobenzothiazole adsorption process on the API X60 steel surfaces in an H2S-containing environment follows the Langmuir adsorption isotherm and occurs spontaneously.

    • loading
    • [1]
      Q. Sun, C.F. Chen, X. Zhao, H. Chi, Y. He, Y.C. Li, Y.M. Qi, and H.B. Yu, Ion-selectivity of iron sulfides and their effect on H2S corrosion, Corros. Sci., 158(2019), art. No. 108085. doi: 10.1016/j.corsci.2019.07.009
      [2]
      M.D.D. Ayagou, G.R. Joshi, T.T.M. Tran, B. Tribollet, E. Sutter, C. Mendibide, C. Duret-Thual, and J. Kittel, Impact of oxygen contamination on the electrochemical impedance spectroscopy of iron corrosion in H2S solutions, Corros. Sci., 164(2020), art. No. 108302. doi: 10.1016/j.corsci.2019.108302
      [3]
      C. Mendibide and C. Duret-Thual, Determination of the critical pitting temperature of corrosion resistant alloys in H2S containing environments, Corros. Sci., 142(2018), p. 56. doi: 10.1016/j.corsci.2018.07.003
      [4]
      Z.G. Liu, X.H. Gao, L.X. Du, J.P. Li, P. Li, C. Yu, R.D.K. Misra, and Y.X. Wang, Comparison of corrosion behaviour of low-alloy pipeline steel exposed to H2S/CO2-saturated brine and vapour-saturated H2S/CO2 environments, Electrochim. Acta, 232(2017), p. 528. doi: 10.1016/j.electacta.2017.02.114
      [5]
      R.S. Feng, J. Beck, M. Ziomek-Moroz, and S.N. Lvov, High-temperature electrochemical corrosion of ultra-high strength carbon steel in H2S-containing alkaline brines, Electrochim. Acta, 241(2017), p. 341. doi: 10.1016/j.electacta.2017.04.111
      [6]
      H. Xu, S.K. Zhou, Y.M. Zhu, W.G. Xu, X.H. Xiong, and H.Z. Tan, Experimental study on the effect of H2S and SO2 on high temperature corrosion of 12Cr1MoV, Chin. J. Chem. Eng., 27(2019), No. 8, p. 1956. doi: 10.1016/j.cjche.2018.12.020
      [7]
      I.B. Obot, M.M. Solomon, S.A. Umoren, R. Suleiman, M. Elanany, N.M. Alanazi, and A.A. Sorour, Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives, J. Ind. Eng. Chem., 79(2019), p. 1. doi: 10.1016/j.jiec.2019.06.046
      [8]
      A.F. Avelino, W.S. Araújo, D.F. Dias, L.P.M. dos Santos, A.N. Correia, and P. de Lima-Neto, Corrosion investigation of the 18Ni 300 grade maraging steel in aqueous chloride medium containing H2S and CO2, Electrochim. Acta, 286(2018), p. 339. doi: 10.1016/j.electacta.2018.08.042
      [9]
      J. Ning, Y.G. Zheng, D. Young, B. Brown, and S. Nešić, Thermodynamic study of hydrogen sulfide corrosion of mild steel, Corrosion, 70(2014), No. 4, p. 375. doi: 10.5006/0951
      [10]
      S.J. Gao, B. Brown, D. Young, and M. Singer, Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion, Corros. Sci., 135(2018), p. 167. doi: 10.1016/j.corsci.2018.02.045
      [11]
      C. Rémazeilles, D. Neff, J.A. Bourdoiseau, R. Sabot, M. Jeannin, and P. Refait, Role of previously formed corrosion product layers on sulfide-assisted corrosion of iron archaeological artefacts in soil, Corros. Sci., 129(2017), p. 169. doi: 10.1016/j.corsci.2017.10.011
      [12]
      S. Grousset, M. Bayle, A. Dauzeres, D. Crusset, V. Deydier, Y. Linard, P. Dillmann, F. Mercier-Bion, and D. Neff, Study of iron sulphides in long-term iron corrosion processes: Characterisations of archaeological artefacts, Corros. Sci., 112(2016), p. 264. doi: 10.1016/j.corsci.2016.07.022
      [13]
      G.M. Jiang, E. Wightman, B.C. Donose, Z.G. Yuan, P.L. Bond, and J. Keller, The role of iron in sulfide induced corrosion of sewer concrete, Water Res., 49(2014), p. 166. doi: 10.1016/j.watres.2013.11.007
      [14]
      X. Cai, X.E. Zhao, and H.Q. Yao, Spontaneous combustion tendency of iron sulfide corrosion: Oxidation characterization and thermostability, Procedia Eng., 84(2014), p. 356. doi: 10.1016/j.proeng.2014.10.444
      [15]
      S.Q. Chen, Y.F. Cheng, and G. Voordouw, A comparative study of corrosion of 316L stainless steel in biotic and abiotic sulfide environments, Int. Biodeterior. Biodegrad., 120(2017), p. 91. doi: 10.1016/j.ibiod.2017.02.014
      [16]
      M. Asadian, M. Sabzi, and S.H.M. Anijdan, The effect of temperature, CO2, H2S gases and the resultant iron carbonate and iron sulfide compounds on the sour corrosion behaviour of ASTM A-106 steel for pipeline transportation, Int. J. Press. Vessels Pip., 171(2019), p. 184. doi: 10.1016/j.ijpvp.2019.02.019
      [17]
      P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, and Y. Tian, Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 63. doi: 10.1007/s12613-019-1870-1
      [18]
      K.X. Liao, F.L. Zhou, X.Q. Song, Y.R. Wang, S. Zhao, J.J. Liang, L. Chen, and G.X. He, Synergistic effect of O2 and H2S on the corrosion behavior of N80 steel in a simulated high-pressure flue gas injection system, J. Mater. Eng. Perform., 29(2020), No. 1, p. 155. doi: 10.1007/s11665-019-04512-2
      [19]
      S.H.M. Anijdan, M. Sabzi, M. Asadian, and H.R. Jafarian, Effect of sub-layer temperature during HFCVD process on morphology and corrosion behavior of tungsten carbide coating, Int. J. Appl. Ceram. Technol., 16(2019), No. 1, p. 243. doi: 10.1111/ijac.13087
      [20]
      T.R. Tamilarasan, R. Rajendran, G. Rajagopal, and J. Sudagar, Effect of surfactants on the coating properties and corrosion behaviour of Ni–P–nano-TiO2 coatings, Surf. Coat. Technol., 276(2015), p. 320. doi: 10.1016/j.surfcoat.2015.07.008
      [21]
      S.H.M. Anijdan, M. Sabzi, M.R. Zadeh, and M. Farzam, The effect of electroless bath parameters and heat treatment on the properties of Ni–P and Ni–P–Cu composite coatings, Mater. Res., 21(2018), No. 2, art. No. e20170973.
      [22]
      S.M. Dezfuli and M. Sabzi, Deposition of ceramic nanocomposite coatings by electroplating process: A review of layer-deposition mechanisms and effective parameters on the formation of the coating, Ceram. Int., 45(2019), No. 17, p. 21835. doi: 10.1016/j.ceramint.2019.07.190
      [23]
      A. Shahriari and H. Aghajani, Electrophoretic deposition of 3YSZ coating on AZ91D using an aluminum interlayer, Prot. Met. Phys. Chem. Surf., 53(2017), No. 3, p. 518. doi: 10.1134/S2070205117030212
      [24]
      M. Sabzi and S.H.M. Anijdan, Microstructural analysis and optical properties evaluation of sol–gel heterostructured NiO–TiO2 film used for solar panels, Ceram. Int., 45(2019), No. 3, p. 3250. doi: 10.1016/j.ceramint.2018.10.229
      [25]
      M. Sabzi, S.H.M. Anijdan, and M. Asadian, The effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating in hot filament chemical vapor deposition, Int. J. Appl. Ceram. Technol., 15(2018), No. 6, p. 1350. doi: 10.1111/ijac.12905
      [26]
      A. Shahriari and H. Aghajani, Electrophoretic deposition of 3YSZ coating on AZ91D alloy using Al and Ni–P interlayers, J. Mater. Eng. Perform., 25(2016), No. 10, p. 4369. doi: 10.1007/s11665-016-2253-7
      [27]
      M. Sabzi, S.H.M. Anijdan, M.R. Zadeh, and M. Farzam, The effect of heat treatment on corrosion behaviour of Ni–P–3 gr/lit Cu nano-composite coating, Can. Metall. Q., 57(2018), No. 3, p. 350. doi: 10.1080/00084433.2018.1444367
      [28]
      S.M. Dezfuli and M. Sabzi, Deposition of self-healing thin films by the sol–gel method: A review of layer-deposition mechanisms and activation of self-healing mechanisms, Appl. Phys. A, 125(2019), No. 8, art. No. 557. doi: 10.1007/s00339-019-2854-8
      [29]
      T.R. Tamilarasan, U. Sanjith, R. Rajendran, G. Rajagopal, and J. Sudagar, Effect of reduced graphene oxide reinforcement on the wear characteristics of electroless Ni–P coatings, J. Mater. Eng. Perform., 27(2018), No. 6, p. 3044. doi: 10.1007/s11665-018-3246-5
      [30]
      M. Sabzi, A. Obeydavi, and S.H.M. Anijdan, The effect of joint shape geometry on the microstructural evolution, fracture toughness, and corrosion behavior of the welded joints of a Hadfield steel, Mech. Adv. Mater. Struct., 26(2019), No. 12, p. 1053. doi: 10.1080/15376494.2018.1430268
      [31]
      E. Ohaeri, J. Omale, U. Eduok, J. Szpunar, M. Arafin, and F. Fazeli, Effect of microstructure and texture evolution on the electrochemical corrosion behavior of warm-rolled API 5L X70 pipeline steel, Metall. Mater. Trans. A, 51(2020), No. 5, p. 2255. doi: 10.1007/s11661-020-05659-7
      [32]
      S.H.M. Anijdan and M. Sabzi, The evolution of microstructure of an high Ni HSLA X100 forged steel slab by thermomechanical controlled processing, [in] The TMS 2018 Annual Meeting & Exhibition, Phoenix, 2018, p. 145.
      [33]
      D. Snihirova, S.V. Lamaka, P. Taheri, J.M.C. Mol, and M.F. Montemor, Comparison of the synergistic effects of inhibitor mixtures tailored for enhanced corrosion protection of bare and coated AA2024-T3, Surf. Coat. Technol., 303(2016), p. 342. doi: 10.1016/j.surfcoat.2015.10.075
      [34]
      Z.X. Li, Q.L. Yu, C.Y. Zhang, Y.P. Liu, J. Liang, D.A. Wang, and F. Zhou, Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy, Surf. Coat. Technol., 357(2019), p. 515. doi: 10.1016/j.surfcoat.2018.10.054
      [35]
      S.A.M. Refaey, F. Taha, and A.M.A. El-Malak, Inhibition of stainless steel pitting corrosion in acidic medium by 2-mercaptobenzoxazole, Appl. Surf. Sci., 236(2004), No. 1-4, p. 175. doi: 10.1016/j.apsusc.2004.04.016
      [36]
      N. Gladkikh, Y. Makarychev, M. Maleeva, M. Petrunin, L. Maksaeva, A. Rybkina, A. Marshakov, and Y. Kuznetsov, Synthesis of thin organic layers containing silane coupling agents and azole on the surface of mild steel. Synergism of inhibitors for corrosion protection of underground pipelines, Prog. Org. Coat., 132(2019), p. 481. doi: 10.1016/j.porgcoat.2019.04.004
      [37]
      N. Kovačević and A. Kokalj, Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces, Mater. Chem. Phys., 137(2012), No. 1, p. 331. doi: 10.1016/j.matchemphys.2012.09.030
      [38]
      P.C. Okonkwo, E. Ahmed, and A.M.A. Mohamed, Effect of temperature on the corrosion behavior of API X80 steel pipeline, Int. J. Electrochem. Sci., 10(2015), No. 12, p. 10246.
      [39]
      H.Y. Cen, J.J. Cao, Z.Y. Chen, and X.P. Guo, 2-Mercaptobenzothiazole as a corrosion inhibitor for carbon steel in supercritical CO2–H2O condition, Appl. Surf. Sci., 476(2019), p. 422. doi: 10.1016/j.apsusc.2019.01.113
      [40]
      I.A. Kartsonakis, A.C. Balaskas, E.P. Koumoulos, C.A. Charitidis, and G.C. Kordas, Incorporation of ceramic nanocontainers into epoxy coatings for the corrosion protection of hot dip galvanized steel, Corros. Sci., 57(2012), p. 30. doi: 10.1016/j.corsci.2011.12.037
      [41]
      M.A. Lucio-Garcia, J.G. Gonzalez-Rodriguez, M. Casales, L. Martinez, J.G. Chacon-Nava, M.A. Neri-Flores, and A. Martinez-Villafañe, Effect of heat treatment on H2S corrosion of a micro-alloyed C–Mn steel, Corros. Sci., 51(2009), No. 10, p. 2380. doi: 10.1016/j.corsci.2009.06.022
      [42]
      S.M. Dezfuli and M. Sabzi, Effect of yttria and benzotriazole doping on wear/corrosion responses of alumina-based nanostructured films, Ceram. Int., 44(2018), No. 16, p. 20245. doi: 10.1016/j.ceramint.2018.07.313
      [43]
      M. Sabzi, S.M. Far, and S.M. Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1431. doi: 10.1007/s12613-018-1697-1
      [44]
      M. Sabzi, S.M. Dezfuli, and S.M. Far, ‎Deposition of Ni–tungsten carbide nanocomposite coating by TIG ‎welding: Characterization and control of microstructure and wear/corrosion responses‎, Ceram. Int., 44(2018), No. 18, p. 22816. doi: 10.1016/j.ceramint.2018.09.073
      [45]
      M. Sabzi and S.M. Dezfuli, A study on the effect of compositing silver oxide nanoparticles by carbon on the ‎electrochemical behavior and electronic properties of zinc–silver oxide batteries‎, Int. J. Appl. Ceram. Technol., 15(2018), No. 6, p. 1446. doi: 10.1111/ijac.13047
      [46]
      M. Sabzi, S.M. Dezfuli, M. Asadian, A. Tafi, and A. Mahaab, Study of the effect of temperature on corrosion behavior of galvanized steel in seawater environment by using potentiodynamic polarization and EIS methods, Mater. Res. Express, 6(2019), No. 7, art. No. 076508. doi: 10.1088/2053-1591/ab10ad
      [47]
      H. Huang and W.J.D. Shaw, Electrochemical aspects of cold work effect on corrosion of mild steel in sour gas environments, Corrosion, 48(1992), No. 11, p. 931. doi: 10.5006/1.3315896
      [48]
      R.J. Xiao, G.Q. Xiao, B. Huang, J.H. Feng, and Q.H. Wang, Corrosion failure cause analysis and evaluation of corrosion inhibitors of Ma Huining oil pipeline, Eng. Fail. Anal., 68(2016), p. 113. doi: 10.1016/j.engfailanal.2016.05.029
      [49]
      A. Fragiel, S. Serna, J. Malo-Tamayo, P. Silva, B. Campillo, E. Martínez-Martínez, L. Cota, M.H. Staia, E.S. Puchi-Cabrera, and R. Perez, Effect of microstructure and temperature on the stress corrosion cracking of two microalloyed pipeline steels in H2S environment for gas transport, Eng. Fail. Anal., 105(2019), p. 1055. doi: 10.1016/j.engfailanal.2019.06.028
      [50]
      T. Yan, S.T. Zhang, L. Feng, Y.J. Qiang, L.S. Lu, D.L. Fu, Y.N. Wen, J.D. Chen, W.P. Li, and B.C. Tan, Investigation of imidazole derivatives as corrosion inhibitors of copper in sulfuric acid: Combination of experimental and theoretical researches, J. Taiwan Inst. Chem. Eng., 106(2020), p. 118. doi: 10.1016/j.jtice.2019.10.014
      [51]
      H. Yang, W.H. Li, X.Y. Liu, A. Liu, P. Hang, R. Ding, T. Li, Y.M. Zhang, W. Wang, and C.S. Xiong, Preparation of corrosion inhibitor loaded zeolites and corrosion resistance of carbon steel in simulated concrete pore solution, Constr. Build. Mater., 225(2019), p. 90. doi: 10.1016/j.conbuildmat.2019.07.141
      [52]
      D.S. Chauhan, A.M. Kumar, and M.A. Quraishi, Hexamethylenediamine functionalized glucose as a new and environmentally benign corrosion inhibitor for copper, Chem. Eng. Res. Des., 150(2019), p. 99. doi: 10.1016/j.cherd.2019.07.020
      [53]
      D.D. Wang, Q. Zhu, Y.Y. Su, J. Li, A.W. Wang, and Z.P. Xing, Preparation of MgAlFe-LDHs as a deicer corrosion inhibitor to reduce corrosion of chloride ions in deicing salts, Ecotoxicol. Environ. Saf., 174(2019), p. 164. doi: 10.1016/j.ecoenv.2019.01.123
      [54]
      C. Verma, H. Lgaz, D.K. Verma, E.E. Ebenso, I. Bahadur, and M.A. Quraishi, Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review, J. Mol. Liq., 260(2018), p. 99. doi: 10.1016/j.molliq.2018.03.045
      [55]
      P. Arellanes-Lozada, O. Olivares-Xometl, N.V. Likhanova, I.V. Lijanova, J.R. Vargas-García, and R.E. Hernández-Ramírez, Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel, J. Mol. Liq., 265(2018), p. 151. doi: 10.1016/j.molliq.2018.04.153
      [56]
      S.K. Shukla, M.A. Quraishi, and E. Ebenso, Adsorption and corrosion inhibition properties of cefadroxil on mild steel in hydrochloric acid, Int. J. Electrochem. Sci., 6(2011), No. 7, p. 2912.
      [57]
      S.T. Zhang, Z.H. Tao, S.G. Liao, and F.J. Wu, Substitutional adsorption isotherms and corrosion inhibitive properties of some oxadiazol-triazole derivative in acidic solution, Corros. Sci., 52(2010), No. 9, p. 3126. doi: 10.1016/j.corsci.2010.05.035
      [58]
      M. El Faydy, B. Lakhrissi, C. Jama, A. Zarrouk, L.O. Olasunkanmi, E.E. Ebenso, and F. Bentiss, Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment, J. Mater. Res. Technol., 9(2020), No. 1, p. 727. doi: 10.1016/j.jmrt.2019.11.014
      [59]
      M.E. Belghiti, S. Bouazama, S. Echihi, A. Mahsoune, A. Elmelouky, A. Dafali, K.M. Emran, B. Hammouti, and M. Tabyaoui, Understanding the adsorption of newly benzylidene-aniline derivatives as a corrosion inhibitor for carbon steel in hydrochloric acid solution: Experimental, DFT and molecular dynamic simulation studies, Arabian J. Chem., 13(2020), No. 1, p. 1499. doi: 10.1016/j.arabjc.2017.12.003
      [60]
      M. Husaini, B. Usman, and M.B. Ibrahim, Study of corrosion inhibition of aluminum in nitric acid solution using anisaldehyde (4-methoxy benzaldehyde) as inhibitor, Algerian J. Eng. Tech., 1(2019), No. 1, p. 11.
      [61]
      C.X. Liang, Z. Liu, Q.Q. Liang, G.C. Han, J.X. Han, S.F. Zhang, and X.Z. Feng, Synthesis of 2-aminofluorene bis-Schiff base and corrosion inhibition performance for carbon steel in HCl, J. Mol. Liq., 277(2019), p. 330. doi: 10.1016/j.molliq.2018.12.095
      [62]
      N.A. Negm, N.G. Kandile, E.A. Badr, and M.A. Mohammed, Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl, Corros. Sci., 65(2012), p. 94. doi: 10.1016/j.corsci.2012.08.002
      [63]
      S.S. Shivakumar and K.N. Mohana, Corrosion behavior and adsorption thermodynamics of some Schiff bases on mild steel corrosion in industrial water medium, Int. J. Corros., 2013(2013), art. No. 543204.
      [64]
      S.A. Umoren, I.B. Obot, A. Madhankumar, and Z.M. Gasem, Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium: Experimental and theoretical approaches, Carbohydr. Polym., 124(2015), p. 280. doi: 10.1016/j.carbpol.2015.02.036
      [65]
      M. Benabdellah, A. Tounsi, K.F. Khaled, and B. Hammouti, Thermodynamic, chemical and electrochemical investigations of 2-mercapto benzimidazole as corrosion inhibitor for mild steel in hydrochloric acid solutions, Arabian J. Chem., 4(2011), No. 1, p. 17. doi: 10.1016/j.arabjc.2010.06.010
      [66]
      H. El Moll, K.M. Alenezi, M.K. Abdel-Latif, H. Halouani, and M.M. EL-Deeb, Water-soluble Calix [4] arenes as inhibitors for the corrosion of aluminium in 2 M H2SO4 solution, Int. J. Electrochem. Sci., 15(2020), p. 252. doi: 10.20964/2020.01.35
      [67]
      H. Hamani, T. Douadi, D. Daoud, M. Al-Noaimi, R.A. Rikkouh, and S. Chafaa, 1-(4-nitrophenylo-imino)-1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1 M HCl solution: Weight loss, electrochemical, thermodynamic and quantum chemical studies, J. Electroanal. Chem., 801(2017), p. 425. doi: 10.1016/j.jelechem.2017.08.031
      [68]
      D.K. Yadav, M.A. Quraishi, and B. Maiti, Inhibition effect of some benzylidenes on mild steel in 1 M HCl: An experimental and theoretical correlation, Corros. Sci., 55(2012), p. 254. doi: 10.1016/j.corsci.2011.10.030
      [69]
      G. Avci, Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5 M HCl, Colloids Surf. A, 317(2008), No. 1-3, p. 730. doi: 10.1016/j.colsurfa.2007.12.009
      [70]
      N.O. Obi-Egbedi and I.B. Obot, Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4, Corros. Sci., 53(2011), No. 1, p. 263. doi: 10.1016/j.corsci.2010.09.020
      [71]
      A. Fawzy, M. Abdallah, I.A. Zaafarany, S.A. Ahmed, and I.I. Althagafi, Thermodynamic, kinetic and mechanistic approach to the corrosion inhibition of carbon steel by new synthesized amino acids-based surfactants as green inhibitors in neutral and alkaline aqueous media, J. Mol. Liq., 265(2018), p. 276. doi: 10.1016/j.molliq.2018.05.140
      [72]
      H. Ouici, M. Tourabi, O. Benali, C. Selles, C. Jama, A. Zarrouk, and F. Bentiss, Adsorption and corrosion inhibition properties of 5-amino 1, 3, 4-thiadiazole-2-thiol on the mild steel in hydrochloric acid medium: Thermodynamic, surface and electrochemical studies, J. Electroanal. Chem., 803(2017), p. 125. doi: 10.1016/j.jelechem.2017.09.018
      [73]
      K. Adardour, R. Touir, M. El bakri, H. Larhzil, M.E. Touhami, Y. Ramli, A. Zarrouk, H. El Kafsaoui, and E.M. Essassi, Thermodynamic properties and comparative studies of quinoxaline derivatives as a corrosion inhibitor for mild steel in 1 M H2SO4, Res. Chem. Intermed., 41(2015), No. 3, p. 1571. doi: 10.1007/s11164-013-1293-y
      [74]
      A.A.F. Sabirneeza and S. Subhashini, Poly(vinyl alcohol–proline) as corrosion inhibitor for mild steel in 1M hydrochloric acid, Int. J. Ind. Chem., 5(2014), No. 3-4, p. 111. doi: 10.1007/s40090-014-0022-8
      [75]
      M.L. Gao, J. Zhang, Q.N. Liu, J.L. Li, R.J. Zhang, and G. Chen, Effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in hydrochloric acid solution, Comptes Rendus Chimie, 22(2019), No. 5, p. 355. doi: 10.1016/j.crci.2019.03.006
      [76]
      D.S. Zinad, M. Hanoon, R.D. Salim, S.I. Ibrahim, A.A. Al-Amiery, M.S. Takriff, and A.A.H. Kadhum, A new synthesized coumarin-derived Schiff base as a corrosion inhibitor of mild steel surface in HCl medium: Gravimetric and DFT studies, Int. J. Corros. Scale Inhib., 9(2020), No. 1, p. 228. doi: 10.17675/2305-6894-2020-9-1-14
      [77]
      S.M. Dezfuli and M. Sabzi, A study on the effect of presence of CeO2 and benzotriazole on activation of self-healing mechanism in ZrO2 ceramic-based coating, Int. J. Appl. Ceram. Technol., 15(2018.), No. 5, p. 1248. doi: 10.1111/ijac.12901
      [78]
      M. Sabzi and S.M. Dezfuli, Deposition of Al2O3 ceramic film on copper-based heterostructured coatings by aluminizing process: Study of the electrochemical responses and corrosion mechanism of the coating, Int. J. Appl. Ceram. Technol., 16(2019), No. 1, p. 195. doi: 10.1111/ijac.13072
      [79]
      M. Sabzi, S.M. Dezfuli⁠, and S.M. Mirsaeedghazi, The effect of pulse-reverse electroplating bath temperature on the wear/corrosion response of Ni–Co/tungsten carbide nanocomposite coating during layer deposition, Ceram. Int., 44(2018), No. 16, p. 19492. doi: 10.1016/j.ceramint.2018.07.189
      [80]
      M. Sabzi, S.M. Far, and S.M. Dezfuli, Characterization of ‎bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on ‎NiTi shape ‎memory alloy‎, Ceram. Int., 44(2018), No. 17, p. 21395. doi: 10.1016/j.ceramint.2018.08.197
      [81]
      S.H.M. Anijdan, M. Sabzi, M.R. Zadeh, and M. Farzam, The influence of pH, rotating speed and Cu content reinforcement nano-particles on wear/corrosion response of Ni–P–Cu nano-composite coatings, Tribol. Int., 127(2018), p. 108. doi: 10.1016/j.triboint.2018.05.040
      [82]
      M. Sabzi, S.H.M. Anijdan, M. Ghobeiti-Hasab, and M. Fatemi-Mehr, Sintering variables optimization, microstructural evolution and physical properties enhancement of nano-WC ceramics, J. Alloys Compd., 766(2018), p. 672. doi: 10.1016/j.jallcom.2018.07.006
      [83]
      S.H.M. Anijdan, M. Sabzi, M. Ghobeiti-Hasab, and A. Roshan-Ghiyas, Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear-tensile strength, Mater. Sci. Eng. A, 726(2018), p. 120. doi: 10.1016/j.msea.2018.04.072
      [84]
      S.H.M Anijdan and M. Sabzi, The effect of pouring temperature and surface angle of vortex casting on microstructural changes and mechanical properties of 7050Al-3 wt% SiC composite, Mater. Sci. Eng. A, 737(2018), p. 230. doi: 10.1016/j.msea.2018.09.057
      [85]
      M. Sabzi and S.M. Dezfuli, Post weld heat treatment of hypereutectoid Hadfield steel: Characterization and control of microstructure, phase equilibrium, mechanical properties and fracture mode of welding joint, J. Manuf. Processes, 34(2018), p. 313. doi: 10.1016/j.jmapro.2018.06.009
      [86]
      M. Sabzi and M. Farzam, Hadfield manganese austenitic steel: A review of manufacturing processes and properties, Mater. Res. Express, 6(2019), No. 10, art. No. 1065c2. doi: 10.1088/2053-1591/ab3ee3
      [87]
      M. Sabzi and S.M. Dezfuli, Drastic improvement in mechanical properties and weldability of 316L stainless steel weld joints by using electromagnetic vibration during GTAW process, J. Manuf. Processes, 33(2018), p. 74. doi: 10.1016/j.jmapro.2018.05.002
      [88]
      M. Sabzi, S.M. Dezfuli, and Z. Balak, Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni–P nanocomposite coating enhanced by zirconia nanoparticles, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1020. doi: 10.1007/s12613-019-1805-x
      [89]
      S.H.M. Anijdan and M. Sabzi, The effect of heat treatment process parameters on mechanical properties, precipitation, fatigue life, and fracture mode of an austenitic Mn Hadfield steel, J. Mater. Eng. Perform., 27(2018), No. 10, p. 5246. doi: 10.1007/s11665-018-3625-y

    Catalog


    • /

      返回文章
      返回