Cite this article as: |
Rong-jian Shi, Zi-dong Wang, Li-jie Qiao, and Xiao-lu Pang, Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 644-656. https://doi.org/10.1007/s12613-020-2157-2 |
We investigated the critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement (HE) of high-strength steel. The results reveal that the mechanical strength and elongation of quenched and tempered steel (919 MPa yield strength, 17.11% elongation) are greater than those of hot-rolled steel (690 MPa yield strength, 16.81% elongation) due to the strengthening effect of in-situ Ti3O5–Nb(C,N) nanoparticles. In addition, the HE susceptibility is substantially mitigated to 55.52%, approximately 30% lower than that of steels without in-situ nanoparticles (84.04%), which we attribute to the heterogeneous nucleation of the Ti3O5 nanoparticles increasing the density of the carbides. Compared with hard TiN inclusions, the spherical and soft Al2O3–MnS core–shell inclusions that nucleate on in-situ Al2O3 particles could also suppress HE. In-situ nanoparticles generated by the regional trace-element supply have strong potential for the development of high-strength and hydrogen-resistant steels.
[1] |
R.A. Oriani and P.H. Josephic, Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel, Acta Metall., 25(1977), No. 9, p. 979. doi: 10.1016/0001-6160(77)90126-2
|
[2] |
S.P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36(1988), No. 10, p. 2639. doi: 10.1016/0001-6160(88)90113-7
|
[3] |
H.K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A, 176(1994), No. 1-2, p. 191. doi: 10.1016/0921-5093(94)90975-X
|
[4] |
C.D. Beachem, A new model for hydrogen-assisted cracking (hydrogen “embrittlement”), Metall. Mater. Trans. B, 3(1972), No. 2, p. 441. doi: 10.1007/BF02642048
|
[5] |
J. Sanchez, S.F. Lee, M.A. Martin-Rengel, J. Fullea, C. Andrade, and J. Ruiz-Hervias, Measurement of hydrogen and embrittlement of high strength steels, Eng. Fail. Anal., 59(2016), p. 467. doi: 10.1016/j.engfailanal.2015.11.001
|
[6] |
A. Kuduzović, M.C. Poletti, C. Sommitsch, M. Domankova, S. Mitsche, and R. Kienreich, Investigations into the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners, Mater. Sci. Eng. A, 590(2014), p. 66. doi: 10.1016/j.msea.2013.10.019
|
[7] |
P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, and Y. Tian, Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 63. doi: 10.1007/s12613-019-1870-1
|
[8] |
J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, and C.S. Lee, Role of Mo/V carbides in hydrogen embrittlement of tempered martensitic steel, Corros. Rev., 33(2015), No. 6, p. 433. doi: 10.1515/corrrev-2015-0052
|
[9] |
D.H. Shim, T. Lee, J. Lee, H.J. Lee, J.Y. Yoo, and C.S. Lee, Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite, Mater. Sci. Eng. A, 700(2017), p. 473. doi: 10.1016/j.msea.2017.06.043
|
[10] |
X.F. Li, J. Zhang, M.M. Ma, and X.L. Song, Effect of shot peening on hydrogen embrittlement of high strength steel, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 667. doi: 10.1007/s12613-016-1279-z
|
[11] |
Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.H. Han, and W. Ke, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel, Acta Mater., 139(2017), p. 188. doi: 10.1016/j.actamat.2017.08.011
|
[12] |
C. Man, C.F. Dong, D.C. Kong, L. Wang, and X.G. Li, Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel, Corros. Sci., 151(2019), p. 108. doi: 10.1016/j.corsci.2019.02.020
|
[13] |
D. Pérez Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, and K. Verbeken, Thermal desorption spectroscopy study of the interaction between hydrogen and different microstructural constituents in lab cast Fe–C alloys, Corros. Sci., 65(2012), p. 199. doi: 10.1016/j.corsci.2012.08.017
|
[14] |
D. Pérez Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy, Mater. Sci. Eng. A, 551(2012), p. 50. doi: 10.1016/j.msea.2012.04.078
|
[15] |
S.M. Lee, I.J. Park, J.G. Jung, and Y.K. Lee, The effect of Si on hydrogen embrittlement of Fe–18Mn–0.6C–xSi twinning-induced plasticity steels, Acta Mater., 103(2016), p. 264. doi: 10.1016/j.actamat.2015.10.015
|
[16] |
W.J. Hui, Z.B. Xu, Y.J. Zhang, X.L. Zhao, C.W. Shao, and Y.Q. Weng, Hydrogen embrittlement behavior of high strength rail steels: A comparison between pearlitic and bainitic microstructures, Mater. Sci. Eng. A, 704(2017), p. 199. doi: 10.1016/j.msea.2017.08.022
|
[17] |
Q.L. Liu, Q.J. Zhou, J. Venezuela, M.X. Zhang, and A. Atrens, Hydrogen influence on some advanced high-strength steels, Corros. Sci., 125(2017), p. 114. doi: 10.1016/j.corsci.2017.06.012
|
[18] |
J.J. Sun, T. Jiang, Y. Sun, Y.J. Wang, and Y.N. Liu, A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement, J. Alloys Compd., 698(2017), p. 390. doi: 10.1016/j.jallcom.2016.12.224
|
[19] |
Q.L. Liu, Q.J. Zhou, J. Venezuela, M.X. Zhang, and A. Atrens, The role of the microstructure on the influence of hydrogen on some advanced high-strength steels, Mater. Sci. Eng. A, 715(2018), p. 370. doi: 10.1016/j.msea.2017.12.079
|
[20] |
J. Takahashi, K. Kawakami, Y. Kobayashi, and T. Tarui, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scripta Mater., 63(2010), No. 3, p. 261. doi: 10.1016/j.scriptamat.2010.03.012
|
[21] |
G.M. Pressouyre, A classification of hydrogen traps in steel, Metall. Trans. A, 10(1979), No. 10, p. 1571. doi: 10.1007/BF02812023
|
[22] |
T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol., 15(1999), No. 1, p. 30. doi: 10.1179/026708399773002782
|
[23] |
J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, and C.S. Lee, Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel, Met. Mater. Int., 22(2016), No. 3, p. 364. doi: 10.1007/s12540-016-5631-7
|
[24] |
A. Turk, D. San Martin, P.E.J. Rivera-Diaz-del-Castillo, and E.I. Galindo-Nava, Correlation between vanadium carbide size and hydrogen trapping in ferritic steel, Scripta Mater., 152(2018), p. 112. doi: 10.1016/j.scriptamat.2018.04.013
|
[25] |
J. Takahashi, K. Kawakami, and T. Tarui, Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography, Scripta Mater., 67(2012), No. 2, p. 213. doi: 10.1016/j.scriptamat.2012.04.022
|
[26] |
D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, and C. Elsässer, First-principles investigation of hydrogen interaction with TiC precipitates in α-Fe, Phys. Rev. B, 93(2016), No. 18, art. No. 184108. doi: 10.1103/PhysRevB.93.184108
|
[27] |
F.G. Wei and K. Tsuzaki, Quantitative analysis on hydrogen trapping of TiC particles in steel, Metall. Mater. Trans. A, 37(2006), No. 2, p. 331. doi: 10.1007/s11661-006-0004-3
|
[28] |
J. Takahashi, K. Kawakami, and Y. Kobayashi, Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel, Acta Mater., 153(2018), p. 193. doi: 10.1016/j.actamat.2018.05.003
|
[29] |
Y.S. Chen, D. Haley, S.S. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J. Bagot, and M.P. Moody, Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355(2017), No. 6330, p. 1196. doi: 10.1126/science.aal2418
|
[30] |
B. Malard, B. Remy, C. Scott, A. Deschamps, J. Chêne, T. Dieudonné, and M.H. Mathon, Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering, Mater. Sci. Eng. A, 536(2012), p. 110. doi: 10.1016/j.msea.2011.12.080
|
[31] |
S.Q. Zhang, E.D. Fan, J.F. Wan, J. Liu, Y.H. Huang, and X.G. Li, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139(2018), p. 83. doi: 10.1016/j.corsci.2018.04.041
|
[32] |
E. Wallaert, T. Depover, M. Arafin, and K. Verbeken, Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of nbc and nbn precipitates, Metall. Mater. Trans. A, 45(2014), No. 5, p. 2412. doi: 10.1007/s11661-013-2181-1
|
[33] |
T. Depover and K. Verbeken, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe–C–Ti alloys, Corros. Sci., 112(2016), p. 308. doi: 10.1016/j.corsci.2016.07.013
|
[34] |
T. Depover and K. Verbeken, Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe–C–V alloys, Mater. Sci. Eng. A, 675(2016), p. 299. doi: 10.1016/j.msea.2016.08.053
|
[35] |
R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel, J. Mater. Sci. Technol., 35(2019), No. 9, p. 1940. doi: 10.1016/j.jmst.2019.05.009
|
[36] |
H. Tang, X.H. Chen, M.W. Chen, L.F. Zuo, B. Hou, and Z.D. Wang, Microstructure and mechanical property of in-situ nano-particle strengthened ferritic steel by novel internal oxidation, Mater. Sci. Eng. A, 609(2014), p. 293. doi: 10.1016/j.msea.2014.05.020
|
[37] |
X.H. Chen, L.L. Qiu, H. Tang, X. Luo, L.F. Zuo, Z.D. Wang, and Y.L. Wang, Effect of nanoparticles formed in liquid melt on microstructure and mechanical property of high strength naval steel, J. Mater. Process. Technol., 222(2015), p. 224. doi: 10.1016/j.jmatprotec.2015.03.013
|
[38] |
S.J. Kim, K.M. Ryu, and M.S. Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 415. doi: 10.1007/s12613-017-1422-5
|
[39] |
Y. Shao, L.M. Yu, Y.C. Liu, Z.Q. Ma, H.J. Li, and J.F. Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 597. doi: 10.1007/s12613-019-1768-y
|
[40] |
Y. Momotani, A. Shibata, D. Terada, and N. Tsuji, Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel, Int. J. Hydrogen Energy, 42(2017), No. 5, p. 3371. doi: 10.1016/j.ijhydene.2016.09.188
|
[41] |
J. Venezuela, Q.L. Liu, M.X. Zhang, Q.J. Zhou, and A. Atrens, The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test, Corros. Sci., 99(2015), p. 98. doi: 10.1016/j.corsci.2015.06.038
|
[42] |
M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis, Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials, Acta Mater., 165(2019), p. 734. doi: 10.1016/j.actamat.2018.12.014
|
[43] |
S. Wang, N. Hashimoto, and S. Ohnuki, Effects of hydrogen on activation volume and density of mobile dislocations in iron-based alloy, Mater. Sci. Eng. A, 562(2013), p. 101. doi: 10.1016/j.msea.2012.10.100
|
[44] |
M. Connolly, M. Martin, P. Bradley, D. Lauria, A. Slifka, R. Amaro, C. Looney, and J.S. Park, In situ high energy X-ray diffraction measurement of strain and dislocation density ahead of crack tips grown in hydrogen, Acta Mater., 180(2019), p. 272. doi: 10.1016/j.actamat.2019.09.020
|
[45] |
A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel, Acta Mater., 60(2012), No. 13-14, p. 5182. doi: 10.1016/j.actamat.2012.06.040
|
[46] |
S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, and I.M. Robertson, Hydrogen-induced intergranular failure of iron, Acta Mater., 69(2014), p. 275. doi: 10.1016/j.actamat.2014.01.060
|
[47] |
M.L. Martin, I.M. Robertson, and P. Sofronis, Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach, Acta Mater., 59(2011), No. 9, p. 3680. doi: 10.1016/j.actamat.2011.03.002
|
[48] |
M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson, On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels, Acta Mater., 59(2011), No. 4, p. 1601. doi: 10.1016/j.actamat.2010.11.024
|
[49] |
J. Venezuela, Q.J. Zhou, Q.L. Liu, H.X. Li, M.X. Zhang, M.S. Dargusch, and A. Atrens, The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels, Mater. Today Commun., 17(2018), p. 1. doi: 10.1016/j.mtcomm.2018.07.011
|
[50] |
F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6997. doi: 10.1016/j.msea.2010.07.022
|
[51] |
J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metall. Trans. A, 11(1980), No. 6, p. 861. doi: 10.1007/BF02654700
|
[52] |
C.S. Zhou, B.G. Ye, Y.Y. Song, T.C. Cui, P. Xu, and L. Zhang, Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel, Int. J. Hydrogen Energy, 44(2019), No. 40, p. 22547. doi: 10.1016/j.ijhydene.2019.04.239
|
[53] |
A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels, J. Mech. Phys. Solids, 112(2018), p. 403. doi: 10.1016/j.jmps.2017.12.016
|
[54] |
P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, 58(2010), No. 2, p. 206. doi: 10.1016/j.jmps.2009.10.005
|
[55] |
X.F. Li, J. Zhang, S.C. Shen, Y.F. Wang, and X.L. Song, Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel, Mater. Sci. Eng. A, 682(2017), p. 359. doi: 10.1016/j.msea.2016.11.064
|
[56] |
L.W. Wang, J.C. Xin, L.J. Cheng, K. Zhao, B.Z. Sun, J.R. Li, X. Wang, and Z.Y. Cui, Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment, Corros. Sci., 147(2019), p. 108. doi: 10.1016/j.corsci.2018.11.007
|
[57] |
B. Zhang and X.L. Ma, A review—Pitting corrosion initiation investigated by TEM, J. Mater. Sci. Technol., 35(2019), No. 7, p. 1455. doi: 10.1016/j.jmst.2019.01.013
|
[58] |
X.S. Du, Y.J. Su, J.X. Li, L.J. Qiao, and W.Y. Chu, Stress corrosion cracking of A537 steel in simulated marine environments, Corros. Sci., 65(2012), p. 278. doi: 10.1016/j.corsci.2012.08.025
|
[59] |
W. Krieger, S.V. Merzlikin, A. Bashir, A. Szczepaniak, H. Springer, and M. Rohwerder, Spatially resolved localization and characterization of trapped hydrogen in zero to three dimensional defects inside ferritic steel, Acta Mater., 144(2018), p. 235. doi: 10.1016/j.actamat.2017.10.066
|
[60] |
Z.X. Peng, J. Liu, F. Huang, Q. Hu, C.S. Cao, and S.P. Hou, Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping, Int. J. Hydrogen Energy, 45(2020), No. 22, p. 12616. doi: 10.1016/j.ijhydene.2020.02.131
|
[61] |
R. Wang, Y.P. Bao, Z.J. Yan, D.Z. Li, and Y. Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 178. doi: 10.1007/s12613-019-1722-z
|
[62] |
M. Itakura, H. Kaburaki, M. Yamaguchi, and T. Okita, The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study, Acta Mater., 61(2013), No. 18, p. 6857. doi: 10.1016/j.actamat.2013.07.064
|
[63] |
P. Yu, Y.G. Cui, G.Z. Zhu, Y. Shen, and M. Wen, The key role played by dislocation core radius and energy in hydrogen interaction with dislocations, Acta Mater., 185(2020), p. 518. doi: 10.1016/j.actamat.2019.12.033
|
[64] |
T. Depover and K. Verbeken, The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism, Int. J. Hydrogen Energy, 43(2018), No. 5, p. 3050. doi: 10.1016/j.ijhydene.2017.12.109
|
[65] |
Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A.M. Guo, and J.M. Cairney, Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates, Science, 367(2020), No. 6474, p. 171. doi: 10.1126/science.aaz0122
|
[66] |
L.F. Li, B. Song, Z.Y. Cai, Z. Liu, and X.K. Cui, Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel, Mater. Sci. Eng. A, 742(2019), p. 712. doi: 10.1016/j.msea.2018.09.048
|