留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 1
Jan.  2021

图(10)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2644
  • HTML全文浏览量:  669
  • PDF下载量:  62
  • 被引次数: 0
Xing-hai Yang, Xiao-hua Chen, Shi-wei Pan, Zi-dong Wang, Kai-xuan Chen, Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 120-130. https://doi.org/10.1007/s12613-020-2159-0
Cite this article as:
Xing-hai Yang, Xiao-hua Chen, Shi-wei Pan, Zi-dong Wang, Kai-xuan Chen, Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 120-130. https://doi.org/10.1007/s12613-020-2159-0
引用本文 PDF XML SpringerLink
研究论文

添加或未添加 Cu−Nb 的超低碳高强度钢焊接金属的显微组织和力学性能

  • Research Article

    Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition

    + Author Affiliations
    • Two types of ultralow carbon steel weld metals (with and without added Cu−Nb) were prepared using gas metal arc welding (GMAW) to investigate the correlation between the microstructure and mechanical properties of weld metals. The results of microstructure characterization showed that the weld metal without Cu−Nb was mainly composed of acicular ferrite (AF), lath bainite (LB), and granular bainite (GB). In contrast, adding Cu−Nb to the weld metal caused an evident transformation of martensite and grain coarsening. Both weld metals had a high tensile strength (more than 950 MPa) and more than 17% elongation; however, their values of toughness deviated greatly, with a difference of approximately 40 J at −50°C. Analysis of the morphologies of the fracture surfaces and secondary cracks further revealed the correlation between the microstructure and mechanical properties. The effects of adding Cu and Nb on the microstructure and mechanical properties of the weld metal are discussed; the indication is that adding Cu−Nb increases the hardenability and grain size of the weld metal and thus deteriorates the toughness.

    • loading
    • [1]
      G.K. Ahiale and Y.J. Oh, Microstructure and fatigue performance of butt-welded joints in advanced high-strength steels, Mater. Sci. Eng. A, 597(2014), p. 342. doi: 10.1016/j.msea.2014.01.007
      [2]
      H. Xie, L.X. Du, J. Hu, G.S. Sun, H.Y. Wu, and R.D.K. Misra, Effect of thermo-mechanical cycling on the microstructure and toughness in the weld CGHAZ of a novel high strength low carbon steel, Mater. Sci. Eng. A, 639(2015), p. 482. doi: 10.1016/j.msea.2015.05.033
      [3]
      P.S. Zhou, B. Wang, L. Wang, Y.W. Hu, and L. Zhou, Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel, Mater. Sci. Eng. A, 722(2018), p. 112. doi: 10.1016/j.msea.2018.03.029
      [4]
      S.G. Lee, D.H. Lee, S.S. Sohn, W.G. Kim, K.K. Um, K.S. Kim, and S. Lee, Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low-alloy (HSLA) steels, Mater. Sci. Eng. A, 697(2017), p. 55. doi: 10.1016/j.msea.2017.04.115
      [5]
      L. Cui, X.Q. Yang, D.P. Wang, J. Cao, and W. Xu, Experimental study of friction taper plug welding for low alloy structure steel: Welding process, Mater. Des., 62(2014), p. 271. doi: 10.1016/j.matdes.2014.05.026
      [6]
      Ş. Talaş, The assessment of carbon equivalent formulas in predicting the properties of steel weld metals, Mater. Des., 31(2010), No. 5, p. 2649. doi: 10.1016/j.matdes.2009.11.066
      [7]
      L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 558(2012), p. 592. doi: 10.1016/j.msea.2012.08.057
      [8]
      A.A. Gorni and P.R. Mei, Austenite transformation and age hardening of HSLA-80 and ULCB steels, J. Mater. Process. Technol., 155-156(2004), p. 1513. doi: 10.1016/j.jmatprotec.2004.04.245
      [9]
      Q.M. Jiang, X.Q. Zhang, and L.Q. Chen, Weldability of 1000 MPa grade ultra-low carbon bainitic steel, J. Iron Steel Res. Int., 23(2016), No. 7, p. 705. doi: 10.1016/S1006-706X(16)30109-1
      [10]
      D.Y. Li, D.Q. Yang, G.J. Zhang, X.H. Chen, and X. Luo, Microstructure and mechanical properties of welding metal with high Cr−Ni austenite wire through Ar−He−N2 gas metal arc welding, J. Manuf. Processes, 35(2018), p. 190. doi: 10.1016/j.jmapro.2018.07.026
      [11]
      R. Pamnani, T. Jayakumar, M. Vasudevan, and T. Sakthivel, Investigations on the impact toughness of HSLA steel arc welded joints, J. Manuf. Processes, 21(2016), p. 75. doi: 10.1016/j.jmapro.2015.11.007
      [12]
      M. Mirzaei, R.A. Jeshvaghani, A. Yazdipour, and K. Zangeneh-Madar, Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel, Mater. Des., 51(2013), p. 709. doi: 10.1016/j.matdes.2013.04.077
      [13]
      Y. Peng, X.N. Peng, X.M. Zhang, Z.L. Tian, and T. Wang, Microstructure and mechanical properties of GMAW weld metal of 890 MPa class steel, J. Iron Steel Res. Int., 21(2014), No. 5, p. 539. doi: 10.1016/S1006-706X(14)60084-4
      [14]
      J.C.F. Jorge, J.L.D. Monteiro, A.J.D.C. Gomes, I.D.S. Bott, L.F.G.D. Souza, M.C. Mendes, and L.S. Araújo, Influence of welding procedure and PWHT on HSLA steel weld metals, J. Mater. Res. Technol., 8(2019), No. 1, p. 561. doi: 10.1016/j.jmrt.2018.05.007
      [15]
      X.L. Wang, X.M. Wang, C.J. Shang, and R.D.K. Misra, Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness, Mater. Sci. Eng. A, 649(2016), p. 282. doi: 10.1016/j.msea.2015.09.030
      [16]
      E. Keehan, L. Karlsson, H.-O. Andrén, and H.K.D.H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 3 − Increased strength resulting from carbon additions, Sci. Technol. Weld. Joining, 11(2006), No. 1, p. 19. doi: 10.1179/174329306X77858
      [17]
      M. Es-Souni, P.A. Beaven, and G.M. Evans, Microstructure of copper-bearing C–Mn weld metal: As-welded and stress-relieved states, Mater. Sci. Eng. A, 130(1990), No. 2, p. 173. doi: 10.1016/0921-5093(90)90058-B
      [18]
      A. Di Schino and P.E. Di Nunzio, Effect of Nb microalloying on the heat affected zone microstructure of girth welded joints, Mater. Lett., 186(2017), p. 86. doi: 10.1016/j.matlet.2016.09.092
      [19]
      A.J.M. Gomes, J.C.F. Jorge, L.F.G. de Souza, and I.D.S. Bott, Influence of chemical composition and post welding heat treatment on the microstructure and mechanical properties of high strength steel weld metals, Mater. Sci. Forum, 758(2013), p. 21. doi: 10.4028/www.scientific.net/MSF.758.21
      [20]
      Z.L. Tian, C.Y. Ma, C.H. He, and Y. Peng, Development of an ultra-low carbon high strength welding wire, Mater. Sci. Forum, 426-432(2003), p. 1451. doi: 10.4028/www.scientific.net/MSF.426-432.1451
      [21]
      X.L. Wan, H.H. Wang, L. Cheng, and K.M. Wu, The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals, Mater. Charact., 67(2012), p. 41. doi: 10.1016/j.matchar.2012.02.007
      [22]
      S. Kumar and S.K. Nath, Effect of weld thermal cycles on microstructures and mechanical properties in simulated heat affected zone of a HY 85 Steel, Trans. Indian Inst. Met., 70(2017), No. 1, p. 239. doi: 10.1007/s12666-016-0880-1
      [23]
      Y.Y. Wang, R. Kannan, and L.J. Li, Characterization of as-welded microstructure of heat-affected zone in modified 9Cr–1Mo–V–Nb steel weldment, Mater. Charact., 118(2016), p. 225. doi: 10.1016/j.matchar.2016.05.024
      [24]
      R. Cao, Z.S. Chan, J.J. Yuan, C.Y. Han, Z.G. Xiao, X.B. Zhang, Y.J. Yan, and J.H. Chen, The effects of silicon and copper on microstructures, tensile and Charpy properties of weld metals by refined X120 wire, Mater. Sci. Eng. A, 718(2018), p. 350. doi: 10.1016/j.msea.2018.01.080
      [25]
      J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel, Scripta Mater., 104(2015), p. 87. doi: 10.1016/j.scriptamat.2015.04.009
      [26]
      M.H. Avazkonandeh-Gharavol, M. Haddad-Sabzevar, and A. Haerian, Effect of copper content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal deposits, Mater. Des., 30(2009), No. 6, p. 1902. doi: 10.1016/j.matdes.2008.09.023
      [27]
      S.Y. Shin, S.Y. Han, B. Hwang, C.G. Lee, and S. Lee, Effects of Cu and B addition on microstructure and mechanical properties of high strength bainitic steels, Mater. Sci. Eng. A, 517(2009), No. 1-2, p. 212. doi: 10.1016/j.msea.2009.03.052
      [28]
      S.T. Wei, and S.P. Lu, Effects of multiple normalizing processes on the microstructure and mechanical properties of low carbon steel weld metal with and without Nb, Mater. Des., 35(2012), p. 43. doi: 10.1016/j.matdes.2011.09.065
      [29]
      J. Moon, S. Kim, H. Jeong, J. Lee, and C. Lee, Influence of Nb addition on the particle coarsening and microstructure evolution in a Ti-containing steel weld HAZ, Mater. Sci. Eng. A, 454-455(2007), p. 648. doi: 10.1016/j.msea.2006.11.125
      [30]
      H.T. Zhao and E.J. Palmiere, Effect of austenite grain size on acicular ferrite transformation in a HSLA steel, Mater. Charact., 145(2018), p. 479. doi: 10.1016/j.matchar.2018.09.013
      [31]
      E. Ma and T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Mater. Today, 20(2017), No. 6, p. 323. doi: 10.1016/j.mattod.2017.02.003
      [32]
      M. Zhou, Y.H. Li, Q. Hu, X.F. Li, and J. Chen, Investigations on edge quality and its effect on tensile property and fracture patterns of QP980, J. Manuf. Processes, 37(2019), p. 509. doi: 10.1016/j.jmapro.2018.12.028
      [33]
      M. Calcagnotto, D. Ponge, and D. Raabe, Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels, Mater. Sci. Eng. A, 527(2010), No. 29-30, p. 7832. doi: 10.1016/j.msea.2010.08.062
      [34]
      H.F. Lan, L.X. Du, Q. Li, C.L. Qiu, J.P. Li, and R.D.K. Misra, Improvement of strength−toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size, J. Alloys Compd., 710(2017), p. 702. doi: 10.1016/j.jallcom.2017.03.024
      [35]
      Z.Q. Wang, X.L. Wang, Y.R. Nan, C.J. Shang, X.M. Wang, K. Liu, and B. Chen, Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique, Mater. Charact., 138(2018), p. 67. doi: 10.1016/j.matchar.2018.01.039
      [36]
      H. Qiu, L.N. Wang, J.G. Qi, H. Zuo, and K. Hiraoka, Enhancement of fracture toughness of high-strength Cr–Ni weld metals by strain-induced martensite transformation, Mater. Sci. Eng. A, 579(2013), p. 71. doi: 10.1016/j.msea.2013.05.012
      [37]
      P.W. Hsu, F.H. Kao, S.H. Wang, J.R. Yang, H.Y. Chang, Y.M. Wang, and Q.X. Lin, Twinned formation in weld metal of titanium bearing nano precipitated high strength steel, Mater. Chem. Phys., 136(2012), No. 2-3, p. 1103. doi: 10.1016/j.matchemphys.2012.08.060
      [38]
      C.L. Davis and J.E. King, Cleavage initiation in the intercritically reheated coarsegrained heat-affected zone. Part I. Fractographic evidence, Metall. Mater. Trans. A, 25(1994), No. 3, p. 563. doi: 10.1007/BF02651598
      [39]
      X. Luo, X.H. Chen, T. Wang, S.W. Pan, and Z.D. Wang, Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel, Mater. Sci. Eng. A, 710(2018), p. 192. doi: 10.1016/j.msea.2017.10.079

    Catalog


    • /

      返回文章
      返回