留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  2656
  • HTML全文浏览量:  752
  • PDF下载量:  122
  • 被引次数: 0
Luming Chen, Yulan Zhen, Guohua Zhang, Desheng Chen, Lina Wang, Hongxin Zhao, Fancheng Meng,  and Tao Qi, Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 239-247. https://doi.org/10.1007/s12613-020-2160-7
Cite this article as:
Luming Chen, Yulan Zhen, Guohua Zhang, Desheng Chen, Lina Wang, Hongxin Zhao, Fancheng Meng,  and Tao Qi, Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 239-247. https://doi.org/10.1007/s12613-020-2160-7
引用本文 PDF XML SpringerLink
研究论文

碳酸钠辅助碳热还原钒钛磁铁矿

  • 通讯作者:

    甄玉兰    E-mail: zhenzhen9545@126.com

文章亮点

  • (1) 系统研究了温度、碱矿比、碳矿比对碳酸钠辅助碳热还原钒钛磁铁矿产物相转变的影响。
  • (2) 明确了碳酸钠和钒钛磁铁矿焙烧反应机理。
  • (3) 提出碳酸钠加快还原速度,同时降低渣相黏度,增加渣-铁分离效率。
  • 碳酸钠辅助碳热还原钒钛磁铁矿工艺具有一步熔炼,高效分离提取钒、钛的优势。然而,碳酸钠在反应中的作用以及反应机理尚未系统研究。 本文在1073–1473 K的反应温度和氩气气氛下,研究了在碳酸钠辅助下钒钛磁铁精矿的碳热还原过程,并通过X射线衍射和扫描电子显微镜研究了反应过程的相转变。研究结果表明,钒钛磁铁矿、石墨和碳酸钠的质量比为100:25:60,温度为1473 K为较好的反应条件。通过研究碳酸钠和钒钛磁铁矿的焙烧过程,发现熔融碳酸钠和酸性氧化物(如Fe2O3, TiO2, Al2O3和SiO2)结合,破坏钒钛磁铁矿的结构,形成富含钠的熔体,同时释放出FeO和MgO。因此,碳酸钠加快了铁氧化物的还原速率。此外,碳酸钠的加入降低了熔渣的黏度,有利于还原铁颗粒的团聚和渣-铁分离。因此,碳酸钠辅助碳热还原是一种具备良好前景的低温处理钒钛磁铁矿的方法。

  • Research Article

    Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate

    + Author Affiliations
    • The carbothermic reduction of vanadium titanomagnetite concentrate (VTC) with the assistance of Na2CO3 was conducted in an argon atmosphere between 1073 and 1473 K. X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction. By investigating the reaction between VTC and Na2CO3, it was concluded that molten Na2CO3 broke the structure of titanomagnetite by combining with the acidic oxides (Fe2O3, TiO2, Al2O3, and SiO2) to form a Na-rich melt and release FeO and MgO. Therefore, Na2CO3 accelerated the reduction rate. In addition, adding Na2CO3 also benefited the agglomeration of iron particles and the slag–metal separation by decreasing the viscosity of the slag. Thus, Na2CO3 assisted carbothermic reduction is a promising method for treating VTC at low temperatures.

    • loading
    • [1]
      F. Zheng, F Chen, Y. Guo, T. Jiang, A. Y. Travyanov, and G. Qiu, Kinetics of hydrochloric acid leaching of titanium from titanium-bearing electric furnace slag, JOM, 68(2016), No. 5, p. 1476. doi: 10.1007/s11837-015-1808-7
      [2]
      X.W. Lv, Z.Q. Lun, J.Q. Yin, and C.Q. Bai, Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior, ISIJ Int., 53(2013), No. 7, p. 1115. doi: 10.2355/isijinternational.53.1115
      [3]
      S. Wang, Y.F. Guo, T. Jiang, L, Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets, JOM, 69(2017), No. 9, p. 1646. doi: 10.1007/s11837-017-2367-x
      [4]
      S. Samanta, S. Mukherjee, and R. Dey, Upgrading metals via direct reduction from poly-metallic titaniferous magnetite ore, JOM, 67(2015), No. 2, p. 467. doi: 10.1007/s11837-014-1203-9
      [5]
      M.Y. Wang, S.F. Zhou, X.W. Wang, B.F. Chen, H.X. Yang, S.K. Wang, and P.F. Luo, Recovery of iron from chromium vanadium-bearing titanomagnetite concentrate by direct reduction, JOM, 68(2016), No. 10, p. 2698. doi: 10.1007/s11837-016-2083-y
      [6]
      Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152. doi: 10.1007/s12613-019-1719-7
      [7]
      X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 301. doi: 10.1007/s12613-019-1864-z
      [8]
      Y.L. Zhen, G.H. Zhang, and K.C. Chou, Viscosity of CaO−MgO−Al2O3−SiO2−TiO2 melts containing TiC particles, Metall. Mater. Trans. B, 46(2015), p. 155. doi: 10.1007/s11663-014-0169-x
      [9]
      W.Q. Fu, Y.C. Wen, and H.E. Xie, Development of intensified technologies of vanadium-bearing titanomagnetite smelting, J. Iron. Steel. Res. Int., 18(2011), No. 4, p. 7. doi: 10.1016/S1006-706X(11)60042-3
      [10]
      L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions, J. Non-Cryst. Solids, 353(2007), No. 22-23, p. 2214. doi: 10.1016/j.jnoncrysol.2007.02.058
      [11]
      L.Y. Shi, Y.L. Zhen, D.S. Chen, Q. Tao, and L.N. Wang, Carbothermic reduction of vanadium−titanium magnetite in molten NaOH, ISIJ Int., 58(2018), No. 4, p. 627. doi: 10.2355/isijinternational.ISIJINT-2017-515
      [12]
      Y.M. Zhang, L.Y. Yi, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Oi, A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: Sodium modification–direct reduction coupled process, Int. J. Miner. Metal. Mater., 24(2017), No. 5, p. 504. doi: 10.1007/s12613-017-1431-4
      [13]
      Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Oi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metal. Mater., 25(2018), No. 2, p. 131. doi: 10.1007/s12613-018-1556-0
      [14]
      F.C. Meng, Y.H. Liu, T.Y. Xue, Q. Su, W.J. Wang, and T. Qi, Structures, formation mechanisms, and ion exchange properties of alpha-, beta-, and gamma-Na2TiO3, RSC Adv., 6(2016), No. 113, p. 112625. doi: 10.1039/C6RA16984H
      [15]
      D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, and L.N. Wang, A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes, J. Hazard. Mater., 244-245(2013), p. 588. doi: 10.1016/j.jhazmat.2012.10.052
      [16]
      D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang, Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal, Miner. Eng., 24(2011), No. 8, p. 864. doi: 10.1016/j.mineng.2011.03.018
      [17]
      L.H. Zhou and F.H. Zeng, Statistical analysis of the effect of Na2CO3 as additive on the reduction of vanadic−titanomagnetite−coal mixed pellets, Adv. Mater. Res., 97-101(2010), p. 465. doi: 10.4028/www.scientific.net/AMR.97-101.465
      [18]
      Z.H. Zhu, G.Q. Lu, and R.T. Yang, New insights into alkali-catalyzed gasification reactions of carbon: Comparison of Na2O reduction with carbon over Na and K catalysts, J. Catal., 192(2000), No. 1, p. 77. doi: 10.1006/jcat.2000.2817
      [19]
      E. Foley and K.P. Mackinnon, Alkaline roasting of ilmenite, J. Solid State Chem., 1(1970), No. 3-4, p. 566. doi: 10.1016/0022-4596(70)90143-X
      [20]
      V. Tathavadkar, and A. Jha, The effect of molten sodium titanate and carbonate salt mixture on the alkali roasting of ilmenite and rutile minerals, [in] VII International Conference on Molten Slags Fluxes and Salts, Cape Town, p. 255.
      [21]
      A. Lahiri, and A. Jha, Kinetics and reaction mechanism of soda ash roasting of ilmenite ore for the extraction of titanium dioxide, Metall. Mater. Trans. B, 38(2007), No. 6, p. 939. doi: 10.1007/s11663-007-9095-5
      [22]
      S. Parirenyatwa, L. Escudero-Castejon, Y. Hara, A. Jha, and S Sanchez-Segado, Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals, Hydrometallurgy, 165(2016), p. 213. doi: 10.1016/j.hydromet.2015.08.002
      [23]
      C. Li, A.F. Reid, and S. Saunders, Nonstoichiometric alkali ferrites and aluminates in the systems NaFeO2−TiO2, KFeO2−TiO2, KAlO2−TiO2, and KAlO2−SiO2, J. Solid State Chem., 3(1971), No. 4, p. 614. doi: 10.1016/0022-4596(71)90109-5
      [24]
      J.W. Kim and H.G. Lee, Thermal and carbothermic decomposition of Na2CO3 and Li2CO3, Metall. Mater. Trans. B, 32(2001), No. 1, p. 17. doi: 10.1007/s11663-001-0003-0
      [25]
      C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
      [26]
      P.C. Holloway, T.H. Etsell, and A. L. Murland, Roasting of La Oroya zinc ferrite with Na2CO3, Metall. Mater. Trans. B, 38(2007), No. 5, p. 781. doi: 10.1007/s11663-007-9082-x
      [27]
      P.C. Holloway, T.H. Etsell, and A.L. Murland, Use of secondary additives to control the dissolution of iron during Na2CO3 roasting of la ooya zinc ferrite, Metall. Mater. Trans. B, 38(2007), No. 5, p. 793. doi: 10.1007/s11663-007-9083-9
      [28]
      E.N. Selivanov, K.V. Pikulin, L.I. Galkova, R.I. Gulyaeva, and S.A. Petrova, Kinetics and mechanism of natural wolframite interactions with sodium carbonate, Int. J. Miner. Metal. Mater., 26(2019), No. 11, p. 1364. doi: 10.1007/s12613-019-1857-y
      [29]
      R.Z. Xu, J.L. Zhang, W.X. Han, Z.Y. Chang, and K.X. Jiao, Effect of BaO and Na2O on the viscosity and structure of blast furnace slag, Ironmaking Steelmaking, 47(2020), No. 2, p. 168. doi: 10.1080/03019233.2018.1498761
      [30]
      A. Tomita, Catalysis of carbon–gas reactions, Catal. Surv. Jpn., 5(2001), No. 1, p. 17. doi: 10.1023/A:1012205714699
      [31]
      W. Pan, Z.J. Ma, Z.X. Zhao, W. H. Kim, and D.J. Min, Effect of Na2O on the reduction of Fe2O3 compacts with CO/CO2, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1326. doi: 10.1007/s11663-012-9738-z

    Catalog


    • /

      返回文章
      返回