留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(18)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2332
  • HTML全文浏览量:  392
  • PDF下载量:  72
  • 被引次数: 0
Lei Tian, Ao Gong, Xuangao Wu, Xiaoqiang Yu, Zhifeng Xu, and Lijie Chen, Process and kinetics of the selective extraction of cobalt from high-silicon low-grade cobalt ores using ammonia leaching, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 218-227. https://doi.org/10.1007/s12613-020-2161-6
Cite this article as:
Lei Tian, Ao Gong, Xuangao Wu, Xiaoqiang Yu, Zhifeng Xu, and Lijie Chen, Process and kinetics of the selective extraction of cobalt from high-silicon low-grade cobalt ores using ammonia leaching, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 218-227. https://doi.org/10.1007/s12613-020-2161-6
引用本文 PDF XML SpringerLink
研究论文

从高硅低品位钴矿中选择性氨浸提取钴的工艺及动力学研究

    * 共同第一作者
  • 通讯作者:

    徐志峰    E-mail: xu.zf@jxust.edu.cn

    陈丽杰    E-mail: 81191520@qq.com

文章亮点

  • (1) 研究了采用氨浸法从高硅低品位钴矿中选择性提取钴的可行性及其影响因素,阐明了选择性氨浸过程中钴的浸出行为。
  • (2) 研究了浸出前后物相组成结构变化及浸取剂循环使用性能。
  • (3) 研究了选择性氨浸过程中钴的浸出动力学及其控制步骤。
  • 本文针对非洲高硅低品位钴矿采用氨性体系选择性浸出钴,避免了其他杂质元素的浸出,整体工艺简单,且对环境友好。浸出试验结果表明:采用(NH4)2SO4 为浸取剂,在 (NH4)2SO4 浓度为300 g/L、还原剂Na2SO3用量为 0.7 g, 浸出温度为353 K、反应时间为4 h、液固比为6 mL/g的条件下,Co的浸出率可达95.61%。钴的浸出动力学研究表明:浸出反应的表观活化能为76.07 kJ/mol(在40–300 kJ/mol范围内),说明从钴矿中浸出Co的过程受界面化学反应控制。Co浸出动力学模型可表示为: $1-{(1-\alpha )}^{1/3}= 28.01\times {10}^{3}\times {r}_{0}^{-1}\times {C}_{{{({\rm NH}}_{4})}_{2}{\rm{SO}}_{4}}^{1.5}\times {\rm exp}(-76073/8.314T)\times{t}$,其中 α是浸出率(%),r0为钴矿的平均半径(m), T 为温度(K), ${C}_{{{({\rm NH}}_{4})}_{2}{{\rm SO}}_{4}}$是反应物初始浓度(kg/m3)。
  • Research Article

    Process and kinetics of the selective extraction of cobalt from high-silicon low-grade cobalt ores using ammonia leaching

    + Author Affiliations
    • An ammonia-based system was used to selectively leach cobalt (Co) from an African high-silicon low-grade Co ore, and the other elemental impurities were inhibited from leaching in this process. This process was simple and environmentally friendly. The results revealed that the leaching ratio of Co can reach up to 95.61% using (NH4)2SO4 as a leaching agent under the following materials and conditions: (NH4)2SO4 concentration 300 g/L, reductant dosage 0.7 g, leaching temperature 353 K, reaction time 4 h, and liquid–solid ratio 6 mL/g. The leaching kinetics of Co showed that the apparent activation energy of Co leaching was 76.07 kJ/mol (i.e., in the range of 40–300 kJ/mol). This indicated that the leaching of Co from the Co ore was controlled by an interfacial chemical reaction, and then the developed leaching kinetics model of the Co can be expressed as $1-{(1-\alpha )}^{1/3}= 28.01\times {10}^{3}\times {r}_{0}^{-1}\times {C}_{{{({\rm NH}}_{4})}_{2}{\rm{SO}}_{4}}^{1.5}\times {\rm exp}(-76073/8.314T)\times{t}$, where α is the leaching ratio (%) of Co, r0 is the average radius (m) of the Co ore particles, T is the temperature (K), and ${C}_{{{({\rm NH}}_{4})}_{2}{{\rm SO}}_{4}}$is the initial reactant concentration (kg/m3).
    • loading
    • [1]
      F.K. Crundwell, N.B. du Preez, and B.D.H. Knights, Production of cobalt from copper-cobalt ores on the African Copperbelt - An overview, Miner. Eng., 156(2020), art. No. 106450. doi: 10.1016/j.mineng.2020.106450
      [2]
      Kuzhipadath Jithesh and M. Arivarasu, Comparative studies on the hot corrosion behavior of air plasma spray and high velocity oxygen fuel coated Co-based L605 superalloys in a gas turbine environment, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 649. doi: 10.1007/s12613-019-1943-1
      [3]
      S. Iravani and R.S. Varma, Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications, Green. Chem., 22(2020), No. 9, p. 2643. doi: 10.1039/D0GC00885K
      [4]
      S.L. Zhang, W.Y. Chen, N. Cui, Q.Q. Wu, and Y.L. Su, Giant magneto impedance effect of Co-rich amorphous fibers under magnetic interaction, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1415. doi: 10.1007/s12613-020-1968-5
      [5]
      M.V. Rane, V.H. Bafna, R. Sadanandam, A.K. Sharma, K. Ramadevi, N.K. Menon, M.F. Fonseca, S.K. Tangri, and A.K. Suri, Recovery of high purity cobalt from spent ammonia cracker catalyst, Hydrometallurgy, 77(2005), No. 3-4, p. 247. doi: 10.1016/j.hydromet.2004.12.004
      [6]
      R.H. Matjie, M.M. Mdleleni, and M.S. Scurrell, Extraction of cobalt(II) from an ammonium nitrate-containing leach liquor by an ammonium salt of di(2-ethylhexyl)phosphoric acid, Miner. Eng., 16(2003), No. 10, p. 1013. doi: 10.1016/S0892-6875(03)00265-6
      [7]
      H. Setiawan, H.T.B.M. Petrus, and I. Perdana, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
      [8]
      J.P.T. Kapusta, Cobalt production and markets: A brief overview, JOM, 58(2006), No. 10, p. 33. doi: 10.1007/s11837-006-0198-2
      [9]
      C.Y. Feng and D.Q. Zhang, Cobalt deposits of China: Classification, distribution and major advances, Acta. Geol. Sin., 78(2004), No. 2, p. 352. doi: 10.1111/j.1755-6724.2004.tb00139.x
      [10]
      R.R. Moskalyk and A.M. Alfantazi, Review of present cobalt recovery practice, Min. Metall. Explor., 17(2000), No. 4, p. 205. doi: 10.1007/BF03403236
      [11]
      I.G. Sharma, P. Alex, A.C. Bidaye, and A.K. Suri, Electrowinning of cobalt from sulphate solutions, Hydrometallurgy, 80(2005), No. 1-2, p. 132. doi: 10.1016/j.hydromet.2005.08.003
      [12]
      M.Z. Zhang, G.C. Zhu, Y.N. Zhao, and X.J. Feng, A study of recovery of copper and cobalt from copper-cobalt oxide ores by ammonium salt roasting, Hydrometallurgy, 129-130(2012), p. 140. doi: 10.1016/j.hydromet.2012.06.014
      [13]
      M.C. Apua and A.F. Mulaba-Bafubiandi, Dissolution of oxidised Co - Cu ores using hydrochloric acid in the presence of ferrous chloride, Hydrometallurgy, 108(2011), No. 3-4, p. 233. doi: 10.1016/j.hydromet.2011.04.012
      [14]
      B. Gupta, A. Deep, V. Singh, and S.N. Tandon, Recovery of cobalt, nickel, and copper from sea nodules by their extraction with alkylphosphines, Hydrometallurgy, 70(2003), No. 1-3, p. 121. doi: 10.1016/S0304-386X(03)00052-5
      [15]
      Z.X. Liu, Z.L. Yin, S.F. Xiong, Y.G. Chen, and Q.Y. Chen, Leaching and kinetic modeling of calcareous bornite in ammonia ammonium sulfate solution with sodium persulfate, Hydrometallurgy, 144-145(2014), p. 86. doi: 10.1016/j.hydromet.2014.01.011
      [16]
      Z.X. Liu, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Leaching kinetics of low-grade copper ore containing calcium-magnesium carbonate in ammonia-ammonium sulfate solution with persulfate, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2822. doi: 10.1016/S1003-6326(11)61538-0
      [17]
      A. Baba, M.K. Ghosh, S.R. Pradhan, D.S. Rao, A. Baral, and F.A. Adekola, Characterization and kinetic study on ammonia leaching of complex copper ore, Trans. Nonferrous Met. Soc. China, 24(2014), No. 5, p. 1587. doi: 10.1016/S1003-6326(14)63229-5
      [18]
      Z.P. Zhao, M. Guo, and M. Zhang, Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method, J. Hazard. Mater., 286(2015), p. 402. doi: 10.1016/j.jhazmat.2014.12.063
      [19]
      C. Wang, Y.F. Guo, S. Wang, F. Chen, Y.J. Tan, F.Q. Zheng, and L.Z. Yang, Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 26. doi: 10.1007/s12613-019-1858-x
      [20]
      Y.M. Chen, N.N. Liu, F. Hu, L.G. Ye, Y. Xi, and S.H. Yang, Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries, Waste. Manage., 75(2018), p. 469. doi: 10.1016/j.wasman.2018.02.024
      [21]
      C.B. Wu, B.S. Li, C.F. Yuan, S.N. Ni, and L.F. Li, Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching, Waste. Manage., 93(2019), p. 153. doi: 10.1016/j.wasman.2019.04.039
      [22]
      Y.P. Qi, F.S. Meng, X.X. Yi, J.C. Shu, M.J. Chen, Z. Sun, S.H. Sun, and F.R. Xiu, A novel and efficient ammonia leaching method for recycling waste lithium ion batteries, J. Cleaner Prod., 251(2020), p. 119665. doi: 10.1016/j.jclepro.2019.119665
      [23]
      O.O. Oluokun and I.O. Otunniyi, Kinetic analysis of Cu and Zn dissolution from printed circuit board physical processing dust under oxidative ammonia leaching, Hydrometallurgy, 193(2020), p. 105320. doi: 10.1016/j.hydromet.2020.105320
      [24]
      X.H. Meng and K.N. Han, The principles and applications of ammonia leaching of metals—A review, Miner. Process. Extr. Metall. Rev., 16(1996), No. 1, p. 23. doi: 10.1080/08827509608914128
      [25]
      N. Peng, B. Peng, H. Liu, K. Xue, D. Chen, and D.H. Lin, Reductive roasting and ammonia leaching of high iron-bearing zinc calcines, Miner. Process. Extr. Metall., 127(2018), No. 1, p. 1. doi: 10.1080/03719553.2016.1258136
      [26]
      S.W. Li, H.Y. Li, W.H. Chen, J.H. Peng, A.Y. Ma, S.H. Yin, L.B. Zhang, and K. Yang, Ammonia leaching of zinc from low-grade oxide zinc ores using the enhancement of the microwave irradiation, Int. J. Chem. React. Eng., 16(2018), No. 3, art. No. 20170055. doi: 10.1515/ijcre-2017-0055
      [27]
      J.A. Dean, Lange’s Handbook of Chemistry, 13th ed., Science Press, Beijing, 1991.
      [28]
      Department of Analytical Chemistry, Central South Institute of Mining and Metallurgy, Handbook of Chemical Analysis, Science Press, Beijing, 1982.
      [29]
      T. Nakamura, H. Kudo, Y. Tsuda, Y. Matsushima, and T. Yoshida. Electrodeposition of Zn–Co–Terephthalate MOF and Its Conversion to Co-Doped ZnO Thin Films, ECS J. Solid State Sci., 10(2021), No. 5, art. No. 057002. doi: 10.1149/2162-8777/abfae1
      [30]
      J.H. Liu, H.R. Zhang, R.X. Wang, and T. Huang, Process of ammonium leaching oxidation ore of cobalt and copper at high pressure, Chin. J. Rare Met., 36(2012), No. 1, p. 149.
      [31]
      Y. Li, N. Kawashima, J. Li, A.P. Chandra, and A.R. Gerson, A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci., 197-198(2013), p. 1. doi: 10.1016/j.cis.2013.03.004
      [32]
      A. Khawam and D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B., 110(2006), No. 35, p. 17315. doi: 10.1021/jp062746a
      [33]
      X.J. Zhou, Y.L. Chen, J.G. Yin, W.T. Xia, X.L. Yuan, and X.Y. Xiang, Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials, Waste. Manage., 76(2018), p. 663. doi: 10.1016/j.wasman.2018.03.051
      [34]
      C.H. Deng, Q.M. Feng, and Y. Chen, Studies on the leaching kinetics of cobalt from spent catalyst with sulphuric acid, Miner. Process. Extr. Metall., 116(2007), No. 3, p. 159. doi: 10.1179/174328507X163977
      [35]
      L. Li, Y.F. Bian, X.X. Zhang, Y.B. Guan, E.S. Fan, F. Wu, and R.J. Chen, Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching, Waste. Manage., 71(2018), p. 362. doi: 10.1016/j.wasman.2017.10.028

    Catalog


    • /

      返回文章
      返回