Cite this article as: |
Lei Tian, Ao Gong, Xuangao Wu, Xiaoqiang Yu, Zhifeng Xu, and Lijie Chen, Process and kinetics of the selective extraction of cobalt from high-silicon low-grade cobalt ores using ammonia leaching, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 218-227. https://doi.org/10.1007/s12613-020-2161-6 |
徐志峰 E-mail: xu.zf@jxust.edu.cn
陈丽杰 E-mail: 81191520@qq.com
[1] |
F.K. Crundwell, N.B. du Preez, and B.D.H. Knights, Production of cobalt from copper-cobalt ores on the African Copperbelt - An overview, Miner. Eng., 156(2020), art. No. 106450. doi: 10.1016/j.mineng.2020.106450
|
[2] |
Kuzhipadath Jithesh and M. Arivarasu, Comparative studies on the hot corrosion behavior of air plasma spray and high velocity oxygen fuel coated Co-based L605 superalloys in a gas turbine environment, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 649. doi: 10.1007/s12613-019-1943-1
|
[3] |
S. Iravani and R.S. Varma, Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications, Green. Chem., 22(2020), No. 9, p. 2643. doi: 10.1039/D0GC00885K
|
[4] |
S.L. Zhang, W.Y. Chen, N. Cui, Q.Q. Wu, and Y.L. Su, Giant magneto impedance effect of Co-rich amorphous fibers under magnetic interaction, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1415. doi: 10.1007/s12613-020-1968-5
|
[5] |
M.V. Rane, V.H. Bafna, R. Sadanandam, A.K. Sharma, K. Ramadevi, N.K. Menon, M.F. Fonseca, S.K. Tangri, and A.K. Suri, Recovery of high purity cobalt from spent ammonia cracker catalyst, Hydrometallurgy, 77(2005), No. 3-4, p. 247. doi: 10.1016/j.hydromet.2004.12.004
|
[6] |
R.H. Matjie, M.M. Mdleleni, and M.S. Scurrell, Extraction of cobalt(II) from an ammonium nitrate-containing leach liquor by an ammonium salt of di(2-ethylhexyl)phosphoric acid, Miner. Eng., 16(2003), No. 10, p. 1013. doi: 10.1016/S0892-6875(03)00265-6
|
[7] |
H. Setiawan, H.T.B.M. Petrus, and I. Perdana, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
|
[8] |
J.P.T. Kapusta, Cobalt production and markets: A brief overview, JOM, 58(2006), No. 10, p. 33. doi: 10.1007/s11837-006-0198-2
|
[9] |
C.Y. Feng and D.Q. Zhang, Cobalt deposits of China: Classification, distribution and major advances, Acta. Geol. Sin., 78(2004), No. 2, p. 352. doi: 10.1111/j.1755-6724.2004.tb00139.x
|
[10] |
R.R. Moskalyk and A.M. Alfantazi, Review of present cobalt recovery practice, Min. Metall. Explor., 17(2000), No. 4, p. 205. doi: 10.1007/BF03403236
|
[11] |
I.G. Sharma, P. Alex, A.C. Bidaye, and A.K. Suri, Electrowinning of cobalt from sulphate solutions, Hydrometallurgy, 80(2005), No. 1-2, p. 132. doi: 10.1016/j.hydromet.2005.08.003
|
[12] |
M.Z. Zhang, G.C. Zhu, Y.N. Zhao, and X.J. Feng, A study of recovery of copper and cobalt from copper-cobalt oxide ores by ammonium salt roasting, Hydrometallurgy, 129-130(2012), p. 140. doi: 10.1016/j.hydromet.2012.06.014
|
[13] |
M.C. Apua and A.F. Mulaba-Bafubiandi, Dissolution of oxidised Co - Cu ores using hydrochloric acid in the presence of ferrous chloride, Hydrometallurgy, 108(2011), No. 3-4, p. 233. doi: 10.1016/j.hydromet.2011.04.012
|
[14] |
B. Gupta, A. Deep, V. Singh, and S.N. Tandon, Recovery of cobalt, nickel, and copper from sea nodules by their extraction with alkylphosphines, Hydrometallurgy, 70(2003), No. 1-3, p. 121. doi: 10.1016/S0304-386X(03)00052-5
|
[15] |
Z.X. Liu, Z.L. Yin, S.F. Xiong, Y.G. Chen, and Q.Y. Chen, Leaching and kinetic modeling of calcareous bornite in ammonia ammonium sulfate solution with sodium persulfate, Hydrometallurgy, 144-145(2014), p. 86. doi: 10.1016/j.hydromet.2014.01.011
|
[16] |
Z.X. Liu, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Leaching kinetics of low-grade copper ore containing calcium-magnesium carbonate in ammonia-ammonium sulfate solution with persulfate, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2822. doi: 10.1016/S1003-6326(11)61538-0
|
[17] |
A. Baba, M.K. Ghosh, S.R. Pradhan, D.S. Rao, A. Baral, and F.A. Adekola, Characterization and kinetic study on ammonia leaching of complex copper ore, Trans. Nonferrous Met. Soc. China, 24(2014), No. 5, p. 1587. doi: 10.1016/S1003-6326(14)63229-5
|
[18] |
Z.P. Zhao, M. Guo, and M. Zhang, Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method, J. Hazard. Mater., 286(2015), p. 402. doi: 10.1016/j.jhazmat.2014.12.063
|
[19] |
C. Wang, Y.F. Guo, S. Wang, F. Chen, Y.J. Tan, F.Q. Zheng, and L.Z. Yang, Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 26. doi: 10.1007/s12613-019-1858-x
|
[20] |
Y.M. Chen, N.N. Liu, F. Hu, L.G. Ye, Y. Xi, and S.H. Yang, Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries, Waste. Manage., 75(2018), p. 469. doi: 10.1016/j.wasman.2018.02.024
|
[21] |
C.B. Wu, B.S. Li, C.F. Yuan, S.N. Ni, and L.F. Li, Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching, Waste. Manage., 93(2019), p. 153. doi: 10.1016/j.wasman.2019.04.039
|
[22] |
Y.P. Qi, F.S. Meng, X.X. Yi, J.C. Shu, M.J. Chen, Z. Sun, S.H. Sun, and F.R. Xiu, A novel and efficient ammonia leaching method for recycling waste lithium ion batteries, J. Cleaner Prod., 251(2020), p. 119665. doi: 10.1016/j.jclepro.2019.119665
|
[23] |
O.O. Oluokun and I.O. Otunniyi, Kinetic analysis of Cu and Zn dissolution from printed circuit board physical processing dust under oxidative ammonia leaching, Hydrometallurgy, 193(2020), p. 105320. doi: 10.1016/j.hydromet.2020.105320
|
[24] |
X.H. Meng and K.N. Han, The principles and applications of ammonia leaching of metals—A review, Miner. Process. Extr. Metall. Rev., 16(1996), No. 1, p. 23. doi: 10.1080/08827509608914128
|
[25] |
N. Peng, B. Peng, H. Liu, K. Xue, D. Chen, and D.H. Lin, Reductive roasting and ammonia leaching of high iron-bearing zinc calcines, Miner. Process. Extr. Metall., 127(2018), No. 1, p. 1. doi: 10.1080/03719553.2016.1258136
|
[26] |
S.W. Li, H.Y. Li, W.H. Chen, J.H. Peng, A.Y. Ma, S.H. Yin, L.B. Zhang, and K. Yang, Ammonia leaching of zinc from low-grade oxide zinc ores using the enhancement of the microwave irradiation, Int. J. Chem. React. Eng., 16(2018), No. 3, art. No. 20170055. doi: 10.1515/ijcre-2017-0055
|
[27] |
J.A. Dean, Lange’s Handbook of Chemistry, 13th ed., Science Press, Beijing, 1991.
|
[28] |
Department of Analytical Chemistry, Central South Institute of Mining and Metallurgy, Handbook of Chemical Analysis, Science Press, Beijing, 1982.
|
[29] |
T. Nakamura, H. Kudo, Y. Tsuda, Y. Matsushima, and T. Yoshida. Electrodeposition of Zn–Co–Terephthalate MOF and Its Conversion to Co-Doped ZnO Thin Films, ECS J. Solid State Sci., 10(2021), No. 5, art. No. 057002. doi: 10.1149/2162-8777/abfae1
|
[30] |
J.H. Liu, H.R. Zhang, R.X. Wang, and T. Huang, Process of ammonium leaching oxidation ore of cobalt and copper at high pressure, Chin. J. Rare Met., 36(2012), No. 1, p. 149.
|
[31] |
Y. Li, N. Kawashima, J. Li, A.P. Chandra, and A.R. Gerson, A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci., 197-198(2013), p. 1. doi: 10.1016/j.cis.2013.03.004
|
[32] |
A. Khawam and D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B., 110(2006), No. 35, p. 17315. doi: 10.1021/jp062746a
|
[33] |
X.J. Zhou, Y.L. Chen, J.G. Yin, W.T. Xia, X.L. Yuan, and X.Y. Xiang, Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials, Waste. Manage., 76(2018), p. 663. doi: 10.1016/j.wasman.2018.03.051
|
[34] |
C.H. Deng, Q.M. Feng, and Y. Chen, Studies on the leaching kinetics of cobalt from spent catalyst with sulphuric acid, Miner. Process. Extr. Metall., 116(2007), No. 3, p. 159. doi: 10.1179/174328507X163977
|
[35] |
L. Li, Y.F. Bian, X.X. Zhang, Y.B. Guan, E.S. Fan, F. Wu, and R.J. Chen, Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching, Waste. Manage., 71(2018), p. 362. doi: 10.1016/j.wasman.2017.10.028
|