留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(8)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  3269
  • HTML全文浏览量:  724
  • PDF下载量:  82
  • 被引次数: 0
Abhishek Pathak, Biswajyoti Mukherjee, Krishna Kant Pandey, Aminul Islam, Pavan Bijalwan, Monojit Dutta, Atanu Banerjee, and Anup Kumar Keshri, Process–structure–property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 144-152. https://doi.org/10.1007/s12613-020-2171-4
Cite this article as:
Abhishek Pathak, Biswajyoti Mukherjee, Krishna Kant Pandey, Aminul Islam, Pavan Bijalwan, Monojit Dutta, Atanu Banerjee, and Anup Kumar Keshri, Process–structure–property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 144-152. https://doi.org/10.1007/s12613-020-2171-4
引用本文 PDF XML SpringerLink
研究论文

等离子喷涂铁基非晶/晶体复合涂层的工艺–结构–性能关系

  • 通讯作者:

    Anup Kumar Keshri    E-mail: anup@iitp.ac.in

  • 本研究试图通过优化等离子喷涂参数来开发一种Fe基非晶/晶体涂层,该涂层主要成分来自一种贫乏的铁基合金(Fe92.6C3.5P1.4Si2Mn0.5)。这种合金是钢铁厂高炉产出的生铁剩余废料。为了经济有效地重新利用这种残留物,这种合金在合成时对成分进行了最少的修改。同时,本研究还探讨了涂层的结构、机械、腐蚀和磨损性能对喷涂参数(等离子功率、主气体流速、送粉速度和间隔距离)的依赖性。X射线衍射表明,在最优的喷涂参数下沉积的涂层存在无定形/晶体相。在较低等离子功率和最高气体流速下沉积的涂层表现出更好的密度、硬度和耐磨性。所有涂层都表现出良好的耐腐蚀性(腐蚀环境:3.5wt% NaCl 溶液)。机械、磨损和摩擦学研究表明,单一的工艺参数优化无法提供良好的涂层性能;相反,所有工艺参数在优化涂层性能都具有独一无二的作用,它们主要通过控制飞行中的颗粒温度和速度分布,以及熔滴撞击基材之前的冷却模式来控制涂层性能。

  • Research Article

    Process–structure–property relationship for plasma-sprayed iron-based amorphous/crystalline composite coatings

    + Author Affiliations
    • This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters (plasma power, primary gas flow rate, powder feed rate, and stand-off distance). X-ray diffraction of the coatings deposited at optimized spray parameters showed the presence of amorphous/crystalline phase. Coatings deposited at a lower plasma power and highest gas flow rate exhibited better density, hardness, and wear resistance. All coatings demonstrated equally good resistance against the corrosive environment (3.5wt% NaCl solution). Mechanical, wear, and tribological studies indicated that a single process parameter optimization cannot provide good coating performance; instead, all process parameters have a unique role in defining better properties for the coating by controlling the in-flight particle temperature and velocity profile, followed by the cooling pattern of molten droplet before impingement on the substrate.

    • loading
    • Supplementary Information s12613-020-2171-4.docx
    • [1]
      A.L. Greer, Metallic glasses, Science, 267(1995), No. 5206, p. 1947. doi: 10.1126/science.267.5206.1947
      [2]
      M.F. Ashby and A.L. Greer, Metallic glasses as structural materials, Scripta Mater., 54(2006), No. 3, p. 321. doi: 10.1016/j.scriptamat.2005.09.051
      [3]
      D.B. Miracle, A structural model for metallic glasses, Nat. Mater., 3(2004), No. 10, p. 697. doi: 10.1038/nmat1219
      [4]
      V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, and G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Appl. Phys. Lett., 83(2003), No. 6, p. 1131. doi: 10.1063/1.1599636
      [5]
      C. Suryanarayana and A. Inoue, Iron-based bulk metallic glasses, Int. Mater. Rev., 58(2013), No. 3, p. 131. doi: 10.1179/1743280412Y.0000000007
      [6]
      X.J. Gu, S.J. Poon, and G.J. Shiflet, Mechanical properties of iron-based bulk metallic glasses, J. Mater. Res., 22(2007), No. 2, p. 344. doi: 10.1557/jmr.2007.0036
      [7]
      B.A. Sun and W.H. Wang, The fracture of bulk metallic glasses, Prog. Mater. Sci., 74(2015), p. 211. doi: 10.1016/j.pmatsci.2015.05.002
      [8]
      Y.C. Li, C. Zhang, W. Xing, S.F. Guo, and L. Liu, Design of Fe-based bulk metallic glasses with improved wear resistance, ACS Appl. Mater. Interfaces, 10(2018), No. 49, p. 43144. doi: 10.1021/acsami.8b11561
      [9]
      A. Kumar, R. Kumar, P. Bijalwan, M. Dutta, A. Banerjee, and T. Laha, Fe-based amorphous/nanocrystalline composite coating by plasma spraying: Effect of heat input on morphology, phase evolution and mechanical properties, J. Alloys Compd., 771(2019), p. 827. doi: 10.1016/j.jallcom.2018.09.024
      [10]
      J. Pan, Q. Chen, N. Li, and L. Liu, Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment, J. Alloys Compd., 463(2008), No. 1-2, p. 246. doi: 10.1016/j.jallcom.2007.09.124
      [11]
      Q.J. Chen, S.B. Guo, X.J. Yang, X.L. Zhou, X.Z. Hua, X.H. Zhu, and Z. Duan, Study on corrosion resistance of Fe-based amorphous coating by laser cladding in hydrochloric acid, Phys. Procedia, 50(2013), p. 297. doi: 10.1016/j.phpro.2013.11.048
      [12]
      A. Inoue, F.L. Kong, Q.K. Man, B.L. Shen, R.W. Li, and F. Al-Marzouki, Development and applications of Fe- and Co-based bulk glassy alloys and their prospects, J. Alloys Compd., 615(2014), p. S2. doi: 10.1016/j.jallcom.2013.11.122
      [13]
      J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Suriñach, J. Eckert, and M.D. Baró, Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion, Scripta Mater., 50(2004), No. 9, p. 1221. doi: 10.1016/j.scriptamat.2004.02.004
      [14]
      J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett., 86(2005), No. 15, art. No. 151907. doi: 10.1063/1.1897426
      [15]
      H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235. doi: 10.1016/j.pmatsci.2019.01.003
      [16]
      Z. Zhou, L. Wang, D.Y. He, F.C. Wang, and Y.B. Liu, Microstructure and electrochemical behavior of Fe-based amorphous metallic coatings fabricated by atmospheric plasma spraying, J. Therm. Spray Technol., 20(2011), No. 1-2, p. 344. doi: 10.1007/s11666-010-9570-4
      [17]
      S. Kumar, J. Kim, H. Kim, and C. Lee, Phase dependence of Fe-based bulk metallic glasses on properties of thermal spray coatings, J. Alloys Compd., 475(2009), No. 1-2, p. L9. doi: 10.1016/j.jallcom.2008.07.064
      [18]
      C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29(2012), p. 80. doi: 10.1016/j.intermet.2012.05.004
      [19]
      P. Fauchais, Understanding plasma spraying, J. Phys. D: Appl. Phys., 37(2004), No. 9, p. R86. doi: 10.1088/0022-3727/37/9/R02
      [20]
      R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu, Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF, Corros. Sci., 53(2011), No. 7, p. 2351. doi: 10.1016/j.corsci.2010.12.022
      [21]
      G.Y. Koga, R. Schulz, S. Savoie, A.R.C. Nascimento, Y. Drolet, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors, Surf. Coat. Technol., 309(2017), p. 938. doi: 10.1016/j.surfcoat.2016.10.057
      [22]
      C.Y. Zhang, Z.H. Chu, F.S. Wei, W.J. Qin, Y. Yang, Y.C. Dong, D. Huang, and L. Wang, Optimizing process and the properties of the sprayed Fe-based metallic glassy coating by plasma spraying, Surf. Coat. Technol., 319(2017), p. 1. doi: 10.1016/j.surfcoat.2017.03.063
      [23]
      Y.Z. Xing, Z. Liu, G. Wang, X.H. Li, C.P. Jiang, Y.N. Chen, Y. Zhang, X.D. Song, and M. Dargusch, Improvement of interfacial bonding between plasma-sprayed cast iron splat and aluminum substrate through preheating substrate, Surf. Coat. Technol., 316(2017), p. 190. doi: 10.1016/j.surfcoat.2017.03.032
      [24]
      P. Bijalwan, K.K. Pandey, B. Mukherjee, A. Islam, A. Pathak, M. Dutta, and A.K. Keshri, Tailoring the bimodal zone in plasma sprayed CNT reinforced YSZ coating and its impact on mechanical and tribological properties, Surf. Coat. Technol., 377(2019), art. No. 124870. doi: 10.1016/j.surfcoat.2019.07.081
      [25]
      R.S. Maurya, A. Sahu, and T. Laha, Quantitative phase analysis in Al86Ni8Y6 bulk glassy alloy synthesized by consolidating mechanically alloyed amorphous powder via spark plasma sintering, Mater. Des., 93(2016), p. 96. doi: 10.1016/j.matdes.2015.12.129
      [26]
      S. Khandanjou, M. Ghoranneviss, and S. Saviz, The investigation of the microstructure behavior of the spray distances and argon gas flow rates effects on the aluminum coating using self-generated atmospheric plasma spray system, J. Theor. Appl. Phys., 11(2017), No. 3, p. 225. doi: 10.1007/s40094-017-0256-x
      [27]
      A.R.M. Sahab, N.H. Saad, S. Kasolang, and J. Saedon, Impact of plasma spray variables parameters on mechanical and wear behaviour of plasma sprayed Al2O3 3%wt TiO2 coating in abrasion and erosion application, Procedia Eng., 41(2012), p. 1689. doi: 10.1016/j.proeng.2012.07.369
      [28]
      M.A. Moore and F.S. King, Abrasive wear of brittle solids, Wear, 60(1980), No. 1, p. 123. doi: 10.1016/0043-1648(80)90253-7
      [29]
      S. Ranjan, B. Mukherjee, A. Islam, K.K. Pandey, R. Gupta, and A.K. Keshri, Microstructure, mechanical and high temperature tribological behaviour of graphene nanoplatelets reinforced plasma sprayed titanium nitride coating, J. Eur. Ceram. Soc., 40(2020), No. 3, p. 660. doi: 10.1016/j.jeurceramsoc.2019.10.043
      [30]
      M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw Hill Book Co, New York, 1986.
      [31]
      C.A.C. Souza, D.V. Ribeiro, and C.S. Kiminami, Corrosion resistance of Fe–Cr-based amorphous alloys: An overview, J. Non Cryst. Solids, 442(2016), p. 56. doi: 10.1016/j.jnoncrysol.2016.04.009

    Catalog


    • /

      返回文章
      返回