留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 6
Jun.  2021

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  4590
  • HTML全文浏览量:  1556
  • PDF下载量:  93
  • 被引次数: 0
Tao Yang, Ya-peng Zheng, Kuo-Chih Chou, and Xin-mei Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1030-1037. https://doi.org/10.1007/s12613-020-2173-2
Cite this article as:
Tao Yang, Ya-peng Zheng, Kuo-Chih Chou, and Xin-mei Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1030-1037. https://doi.org/10.1007/s12613-020-2173-2
引用本文 PDF XML SpringerLink
研究论文封面文章

单晶CsPbI3纳米带的可控制备及其在光电探测器中的应用

  • Research Article

    Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors

    + Author Affiliations
    • Lead halide perovskites have received increasing attention recently as a candidate material in various optoelectronic areas because of their high performance as light absorbers. Herein, we report the growth of CsPbI3 nanobelts via a solution process. A single-crystalline CsPbI3 nanobelt with uniform morphology can be achieved by controlling the amount of PbI2. A single-crystalline CsPbI3 nanobelt possesses a mean width, length, and thickness of 100 nm, 5 µm, and 20 nm, respectively. In this work, photodetectors (PDs) based on individual CsPbI3 nanobelts are constructed and found to perform well with an external quantum efficiency and responsivity of 2.39 × 105% and 770 A/W, respectively. The PDs also show a high detectivity of up to 3.12 × 1012 Jones, which is at par with that of Si PDs. The PDs developed in this work exhibit great promise in various optoelectronic nanodevices.

    • loading
    • [1]
      N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517(2015), No. 7535, p. 476. doi: 10.1038/nature14133
      [2]
      L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., 15(2015), No. 6, p. 3692. doi: 10.1021/nl5048779
      [3]
      B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. de Angelis, and H.G. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater., 5(2015), No. 15, art. No. 1500477. doi: 10.1002/aenm.201500477
      [4]
      J. Yang, B.D. Siempelkamp, D. Liu, and T.L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques, ACS Nano, 9(2015), No. 2, p. 1955. doi: 10.1021/nn506864k
      [5]
      P. Liu, X.X. He, J.H. Ren, Q. Liao, J.N. Yao, and H.B. Fu, Organic–inorganic hybrid perovskite nanowire laser arrays, ACS Nano, 11(2017), No. 6, p. 5766. doi: 10.1021/acsnano.7b01351
      [6]
      M.I. Saidaminov, M.A. Haque, M. Savoie, A.L. Abdelhady, N. Cho, I. Dursun, U. Buttner, E. Alarousu, T. Wu, and O.M. Bakr, Perovskite photodetectors operating in both narrowband and broadband regimes, Adv. Mater., 28(2016), No. 37, p. 8144. doi: 10.1002/adma.201601235
      [7]
      T. Yang, Y.P. Zheng, Z.T. Du, W.N. Liu, Z.B. Yang, F.M. Gao, L. Wang, K.C. Chou, X.M. Hou, and W.Y. Yang, Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability, ACS Nano, 12(2018), No. 2, p. 1611. doi: 10.1021/acsnano.7b08201
      [8]
      L. Meng, E.P. Yao, Z.R. Hong, H.J. Chen, P.Y. Sun, Z.L. Yang, G. Li, and Y. Yang, Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage, Adv. Mater., 29(2017), No. 4, art. No. 1603826. doi: 10.1002/adma.201603826
      [9]
      M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354(2016), No. 6309, p. 206. doi: 10.1126/science.aah5557
      [10]
      D.W. Zhao, Y. Yu, C.L. Wang, W.Q. Liao, N. Shrestha, C.R. Grice, A.J. Cimaroli, L. Guan, R.J. Ellingson, K. Zhu, X.Z. Zhao, R.G. Xiong, and Y.F. Yan, Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells, Nat. Energy, 2(2017), No. 4, art. No. 17018. doi: 10.1038/nenergy.2017.18
      [11]
      X.M. Li, D.J. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J.Z. Song, and H.B. Zeng, Healing all-inorganic perovskite films via recyclable dissolution–recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability, Adv. Funct. Mater., 26(2016), No. 32, p. 5903. doi: 10.1002/adfm.201601571
      [12]
      M.I. Saidaminov, M.A. Haque, J. Almutlaq, S. Sarmah, X.H. Miao, R. Begum, A.A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O.F. Mohammed, T. Wu, and O.M. Bakr, Inorganic lead halide perovskite single crystals: Phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection, Adv. Opt. Mater., 5(2017), No. 2, art. No. 1600704. doi: 10.1002/adom.201600704
      [13]
      A. Waleed, M.M. Tavakoli, L.L. Gu, S. Hussain, D.Q. Zhang, S. Poddar, Z.Y. Wang, R.J. Zhang, and Z.Y. Fan, All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors, Nano Lett., 17(2017), No. 8, p. 4951. doi: 10.1021/acs.nanolett.7b02101
      [14]
      W.Y. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, and A.D. Mohite, Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347(2015), No. 6221, p. 522. doi: 10.1126/science.aaa0472
      [15]
      Q.F. Dong, Y.J. Fang, Y.C. Shao, P. Mulligan, J. Qiu, L. Cao, and J.S. Huang, Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals, Science, 347(2015), No. 6225, p. 967. doi: 10.1126/science.aaa5760
      [16]
      W. Deng, X.J. Zhang, L.M. Huang, X.Z. Xu, L. Wang, J.C. Wang, Q.X. Shang, S.T. Lee, and J.S. Jie, Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability, Adv. Mater., 28(2016), No. 11, p. 2201. doi: 10.1002/adma.201505126
      [17]
      J. Xing, X.F. Liu, Q. Zhang, S.T. Ha, Y.W. Yuan, C. Shen, T.C. Sum, and Q.H. Xiong, Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers, Nano Lett., 15(2015), No. 7, p. 4571. doi: 10.1021/acs.nanolett.5b01166
      [18]
      H.M. Zhu, Y.P. Fu, F. Meng, X.X. Wu, Z.Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, and X.Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater., 14(2015), No. 6, p. 636. doi: 10.1038/nmat4271
      [19]
      D.M. Trots and S.V. Myagkota, High-temperature structural evolution of caesium and rubidium triiodoplumbates, J. Phys. Chem. Solids, 69(2008), No. 10, p. 2520. doi: 10.1016/j.jpcs.2008.05.007
      [20]
      C.K. Møller, Crystal structure and photoconductivity of cæsium plumbohalides, Nature, 182(1958), No. 4647, p. 1436. doi: 10.1038/1821436a0
      [21]
      P.A. Hu, Z.Z. Wen, L.F. Wang, P.H. Tan, and K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors, ACS Nano, 6(2012), No. 7, p. 5988. doi: 10.1021/nn300889c
      [22]
      L. Ma, W. Hu, Q.L. Zhang, P.Y. Ren, X.J. Zhuang, H. Zhou, J.Y. Xu, H.L. Li, Z.P. Shan, X.X. Wang, L. Liao, H.Q. Xu, and A.L. Pan, Room-temperature near-infrared photodetectors based on single heterojunction nanowires, Nano Lett., 14(2014), No. 2, p. 694. doi: 10.1021/nl403951f
      [23]
      L.T. Dou, Y. Yang, J.B. You, Z.R. Hong, W.H. Chang, G. Li, and Y. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity, Nat. Commun., 5(2014), art. No. 5404. doi: 10.1038/ncomms6404
      [24]
      X. Gong, M.H. Tong, Y.J. Xia, W.Z. Cai, J.S. Moon, Y. Cao, G. Yu, C.L. Shieh, B. Nilsson, and A.J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm, Science, 325(2009), No. 5948, p. 1665. doi: 10.1126/science.1176706
      [25]
      S. Panigrahi and D. Basak, Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection, Nanoscale, 3(2011), No. 5, p. 2336. doi: 10.1039/c1nr10064e
      [26]
      H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Nanowire ultraviolet photodetectors and optical switches, Adv. Mater., 14(2002), No. 2, p. 158. doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
      [27]
      C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, ZnO nanowire UV photodetectors with high internal gain, Nano Lett., 7(2007), No. 4, p. 1003. doi: 10.1021/nl070111x
      [28]
      H. Liu, Z.M. Zhang, L.F. Hu, N. Gao, L.W. Sang, M.Y. Liao, R.Z. Ma, F.F. Xu, and X.S. Fang, New UV-A photodetector based on individual potassium niobate nanowires with high performance, Adv. Opt. Mater., 2(2014), No. 8, p. 771. doi: 10.1002/adom.201400176
      [29]
      X. Hu, X.D. Zhang, L. Liang, J. Bao, S. Li, W.L. Yang, and Y. Xie, High-performance flexible broadband photodetector based on organolead halide perovskite, Adv. Funct. Mater., 24(2014), No. 46, p. 7373. doi: 10.1002/adfm.201402020
      [30]
      H. Deng, X.K. Yang, D.D. Dong, B. Li, D. Yang, S.J. Yuan, K.K. Qiao, Y.B. Cheng, J. Tang, and H.S. Song, Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability, Nano Lett., 15(2015), No. 12, p. 7963. doi: 10.1021/acs.nanolett.5b03061
      [31]
      Y.H. Dong, Y. Gu, Y.S. Zou, J.Z. Song, L.M. Xu, J.H. Li, J. Xue, X.M. Li, and H.B. Zeng, Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect, Small, 12(2016), No. 40, p. 5622. doi: 10.1002/smll.201602366
      [32]
      Y. Li, Z.F. Shi, S. Li, L.Z. Lei, H.F. Ji, D. Wu, T.T. Xu, Y.T. Tian, and X.J. Li, High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films, J. Mater. Chem. C, 5(2017), No. 33, p. 8355. doi: 10.1039/C7TC02137B
      [33]
      X.M. Li, D.J. Yu, J. Chen, Y. Wang, F. Cao, Y. Wei, Y. Wu, L. Wang, Y. Zhu, Z.G. Sun, J.P. Ji, Y.L. Shen, H.D. Sun, and H.B. Zeng, Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity, ACS Nano, 11(2017), No. 2, p. 2015. doi: 10.1021/acsnano.6b08194
      [34]
      X.H. Liu, D.J. Yu, F. Cao, X.M. Li, J.P. Ji, J. Chen, X.F. Song, and H.B. Zeng, Low-voltage photodetectors with high responsivity based on solution-processed micrometer-scale all-inorganic perovskite nanoplatelets, Small, 13(2017), No. 25, art. No. 1700364. doi: 10.1002/smll.201700364
      [35]
      M. Shoaib, X.H. Zhang, X.X. Wang, H. Zhou, T. Xu, X. Wang, X.L. Hu, H.W. Liu, X.P. Fan, W.H. Zheng, T.F. Yang, S.Z. Yang, Q.L. Zhang, X.L. Zhu, L.T. Sun, and A.L. Pan, Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors, J. Am. Chem. Soc., 139(2017), No. 44, p. 15592. doi: 10.1021/jacs.7b08818

    Catalog


    • /

      返回文章
      返回