留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 5
May  2021

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  3731
  • HTML全文浏览量:  1018
  • PDF下载量:  170
  • 被引次数: 0
Chen-yang Xu, Cui Wang, Ren-ze Xu, Jian-liang Zhang, and Ke-xin Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 797-803. https://doi.org/10.1007/s12613-020-2187-9
Cite this article as:
Chen-yang Xu, Cui Wang, Ren-ze Xu, Jian-liang Zhang, and Ke-xin Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 797-803. https://doi.org/10.1007/s12613-020-2187-9
引用本文 PDF XML SpringerLink
研究论文

Al2O3对CaO–SiO2–MgO–Al2O3–Cr2O3渣粘度的影响


  • Research Article

    Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags

    + Author Affiliations
    • We investigated the effect of Al2O3 content on the viscosity of CaO–SiO2–Al2O3–8wt%MgO–1wt%Cr2O3 (mass ratio of CaO/SiO2 is 1.0, and Al2O3 content is 17wt%–29wt%) slags. The results show that the viscosity of the slag increases gradually with increases in the Al2O3 content in the range of 17wt% to 29wt% due to the role of Al2O3 as a network former in the polymerization of the aluminosilicate structure of the slag. With increases in the Al2O3 content from 17wt% to 29wt%, the apparent activation energy of the slags also increases from 180.85 to 210.23 kJ/mol, which is consistent with the variation in the critical temperature. The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al2O3. The application of Iida’s model for predicting the slag viscosity in the presence of Cr2O3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al2O3 content are at relatively low levels, i.e., the temperature range of 1673 to 1803 K and the Al2O3 content range of 17wt%–29wt% in CaO–SiO2–Al2O3–8wt%MgO–1wt%Cr2O3 slag.

    • loading
    • [1]
      J.H. Li, X.H. Li, Q.Y. Hu, Z.X. Wang, Y.Y. Zhou, J.C. Zheng, W.R. Liu, and L.J. Li, Effect of pre-roasting on leaching of laterite, Hydrometallurgy, 99(2009), No. 1-2, p. 84. doi: 10.1016/j.hydromet.2009.07.006
      [2]
      T. Norgate and S. Jahanshahi, Assessing the energy and greenhouse gas footprints of nickel laterite processing, Miner. Eng., 24(2011), No. 7, p. 698. doi: 10.1016/j.mineng.2010.10.002
      [3]
      B.S. Zhang, K.X. Jiang, H.B. Wang, and Y.P. Feng, Progress of pyrometallurgical smelting technologies for laterite nickel ore in China, Nonferrous Met. Eng. Res., 33(2012), No. 5, p. 16.
      [4]
      Y.P. Zhang, Technico-economical analysis of Ni-containing hot metal production with laterite in the blast furnace, Ferro-Alloys, 44(2013), No. 4, p. 10.
      [5]
      R.Z. Xu, J.L. Zhang, X.Y. Fan, W.W. Zheng, and Y.A. Zhao, Effect of MnO on high-alumina slag viscosity and corrosion behavior of refractory in slags, ISIJ Int., 57(2017), No. 11, p. 1887. doi: 10.2355/isijinternational.ISIJINT-2017-120
      [6]
      R.Z. Xu, J.L. Zhang, Z.Y. Wang, and K.X. Jiao, Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag, Steel Res. Int., 88(2017), No. 4, art. No. 1600241. doi: 10.1002/srin.201600241
      [7]
      R.Z. Xu, J.L. Zhang, R.Y. Ma, K.X. Jiao, and Y.A. Zhao, Influence of TiO2 on the viscosity of a high alumina slag and on carbon brick corrosion, Steel Res. Int., 89(2018), No. 3, art. No. 1700353. doi: 10.1002/srin.201700353
      [8]
      C.K. Du, J. Yang, X.Z. Zhao, Y.J. Shi, J.L. You, and X.D. Gao, Viscosity and desulfurization behavior of blast furnace slag with high Al2O3 content, J. Iron Steel Res., 25(2013), No. 7, p. 19.
      [9]
      J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 310. doi: 10.1007/s12613-019-1914-6
      [10]
      Z.M. Yan, X.W. Lv, D. Liang J. Zhang, and C.G. Bai, Transition of blast furnace slag from silicates-based to aluminates-based: Viscosity, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1092. doi: 10.1007/s11663-016-0676-z
      [11]
      X.F. Zhang, T. Jiang, X.X. Xue, and B.S. Hu, Influence of MgO/Al2O3 ratio on viscosity of blast furnace slag with high Al2O3 content, Steel Res. Int., 87(2016), No. 1, p. 87. doi: 10.1002/srin.201400523
      [12]
      L. Yao, S. Ren, X.Q. Wang, Q.C. Liu, L.Y. Dong, J.F. Yang, and J.B. Liu, Effect of Al2O3, MgO and CaO/SiO2 on viscosity of high alumina blast furnace slag, Steel Res. Int., 87(2016), No. 2, p. 241. doi: 10.1002/srin.201500021
      [13]
      H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min, and I. Sohn, Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate–based slags containing 10 mass pct MgO, Metall. Mater. Trans. B, 44(2013), No. 1, p. 5. doi: 10.1007/s11663-012-9759-7
      [14]
      J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO–SiO2(–MgO)–Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269. doi: 10.1007/s11663-004-0028-2
      [15]
      G. Urbain, Viscosity estimation of slags, Steel Res. Int., 58(1987), No. 3, p. 111. doi: 10.1002/srin.198701513
      [16]
      P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye, Improvement of continuous casting powders, Fachber. Hüttenprax. Metallweiterverarbei., 19(1981), No. 10, p. 859.
      [17]
      T. Iida, H. Sakai, Y. Kita, and K. Murakami, Equation for estimating viscosities of industrial mold fluxes, High Temp. Mater. Processes, 19(2000), No. 3-4, p. 153. doi: 10.1515/HTMP.2000.19.3-4.153
      [18]
      T. Iida, H. Sakai, Y. Kita, and K. Shigeno, An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition, ISIJ Int., 40(2000), p. S110. doi: 10.2355/isijinternational.40.Suppl_S110
      [19]
      K.C. Mills and S. Sridhar, Viscosities of ironmaking and steelmaking slags, Ironmaking Steelmaking, 26(1999), No. 4, p. 262. doi: 10.1179/030192399677121
      [20]
      H.S. Ray and S. Pal, Simple method for theoretical estimation of viscosity of oxide melts using optical basicity, Ironmaking Steelmaking, 31(2004), No. 2, p. 125. doi: 10.1179/030192304225012097
      [21]
      A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman, Estimation of viscosity for blast furnace type slags, Ironmaking Steelmaking, 34(2007), No. 6, p. 477. doi: 10.1179/174328107X17467
      [22]
      M. Nakamoto, J. Lee, and T. Tanaka, A model for estimation of viscosity of molten silicate slag, ISIJ Int., 45(2005), No. 5, p. 651. doi: 10.2355/isijinternational.45.651
      [23]
      M. Nakamoto, Y. Miyabayashi, L. Holappa, and T. Tanaka, A model for estimating viscosities of aluminosilicate melts containing alkali oxides, ISIJ Int., 47(2007), No. 10, p. 1409. doi: 10.2355/isijinternational.47.1409
      [24]
      Y. Miyabayashi, M. Nakamoto, T. Tanaka, and T. Yamamoto, A model for estimating the viscosity of molten aluminosilicate containing calcium fluoride, ISIJ Int., 49(2009), No. 3, p. 343. doi: 10.2355/isijinternational.49.343
      [25]
      G.H. Zhang, K.C. Chou, and K. Mills, A structurally based viscosity model for oxide melts, Metall. Mater. Trans. B, 45(2014), No. 2, p. 698. doi: 10.1007/s11663-013-9980-z
      [26]
      G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367. doi: 10.2355/isijinternational.55.1367
      [27]
      J.H. Park, D.J. Min, and H.S. Song, The effect of CaF2 on the viscosities and structures of CaO–SiO2(–MgO)–CaF2 slags, Metall. Mater. Trans. B, 33(2002), No. 5, p. 723. doi: 10.1007/s11663-002-0026-1
      [28]
      C. Wang, J.L Zhang, Z.J. Liu, K.X. Jiao, G.W. Wang, J.Q. Yang, and K.C. Chou, Effect of chlorine on the viscosities and structures of CaO–SiO2–CaCl2 slags, Metall. Mater. Trans. B, 48(2017), No. 1, p. 328. doi: 10.1007/s11663-016-0846-z
      [29]
      K.Y. Ko and J.H. Park, Effect of CaF2 addition on the viscosity and structure of CaO–SiO2–MnO slags, ISIJ Int., 53(2013), No. 6, p. 958. doi: 10.2355/isijinternational.53.958
      [30]
      J.H. Park, Structure-property correlations of CaO–SiO2–MnO slag derived from Raman spectroscopy, ISIJ Int., 52(2012), No. 9, p. 1627. doi: 10.2355/isijinternational.52.1627
      [31]
      J.H. Park, D.J. Min, and H.S. Song, Structural investigation of CaO–Al2O3 and CaO–Al2O3–CaF2 slags via fourier transform infrared spectra, ISIJ Int., 42(2002), No. 1, p. 38. doi: 10.2355/isijinternational.42.38
      [32]
      W.H. Kim, I. Sohn, and D.J. Min, A study on the viscous behaviour with K2O additions in the CaO–SiO2–Al2O3–MgO–K2O quinary slag system, Steel Res. Int., 81(2010), No. 9, p. 735. doi: 10.1002/srin.201000067
      [33]
      J.S. Machin, T.B. Yee, and D.L. Hanna, Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2, J. Am. Ceram. Soc., 35(1952), No. 12, p. 322. doi: 10.1111/j.1151-2916.1952.tb13057.x
      [34]
      J.S. Machin and D.L Hanna, Viscosity studies of system CaO–MgO–Al2O3–SiO2: Ⅰ, 40% SiO2, J. Am. Ceram. Soc., 28(1945), No. 11, p. 310. doi: 10.1111/j.1151-2916.1945.tb14500.x

    Catalog


    • /

      返回文章
      返回