留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 1
Jan.  2021

图(11)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  6241
  • HTML全文浏览量:  1901
  • PDF下载量:  345
  • 被引次数: 0
Zhi Zhang, Jing-huai Zhang, Jun Wang, Ze-hua Li, Jin-shu Xie, Shu-juan Liu, Kai Guan,  and Rui-zhi Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 30-45. https://doi.org/10.1007/s12613-020-2190-1
Cite this article as:
Zhi Zhang, Jing-huai Zhang, Jun Wang, Ze-hua Li, Jin-shu Xie, Shu-juan Liu, Kai Guan,  and Rui-zhi Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 30-45. https://doi.org/10.1007/s12613-020-2190-1
引用本文 PDF XML SpringerLink
特约综述

通过变形工艺细化晶粒,开发同时具备高强度和高延展性的镁合金

  • Invited Review

    Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process

    + Author Affiliations
    • Magnesium (Mg) alloys, as the lightest metal engineering materials, have broad application prospects. However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously. Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility. In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced. Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence. This review can be used as a reference for further development of high-performance fine-grained Mg alloys.

    • loading
    • [1]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [2]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [3]
      J.S. Xie, J.H. Zhang, Z.H. You, S.J. Liu, K. Guan, R.Z. Wu, J. Wang, and J. Feng, Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying, J. Magnesium Alloys(2020). DOI: 10.1016/j.jma.2020.08.016
      [4]
      Y.X. Li and X.Q. Zeng, A review on Mg–RE alloys with high product of strength and elongation, J. Aeronaut. Mater., 38(2018), No. 4, p. 1.
      [5]
      I.A. Ovid'ko, R.Z. Valiev, and Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mater. Sci., 94(2018), p. 462. doi: 10.1016/j.pmatsci.2018.02.002
      [6]
      H. Wu and G.H. Fan, An overview of tailoring strain delocalization for strength–ductility synergy, Prog. Mater. Sci., 113(2020), art. No. 100675. doi: 10.1016/j.pmatsci.2020.100675
      [7]
      J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, Recent developments in high-strength Mg–RE-based alloys: Focusing on Mg–Gd and Mg–Y systems, J. Magnesium Alloys, 6(2018), No. 3, p. 277. doi: 10.1016/j.jma.2018.08.001
      [8]
      Z.X. Wu, R. Ahmad, B.L. Yin, S. Sandlöbes, and W.A. Curtin, Mechanistic origin and prediction of enhanced ductility in magnesium alloys, Science, 359(2018), No. 6374, p. 447. doi: 10.1126/science.aap8716
      [9]
      R. Ahmad, B.L. Yin, Z.X. Wu, and W.A. Curtin, Designing high ductility in magnesium alloys, Acta Mater., 172(2019), p. 161. doi: 10.1016/j.actamat.2019.04.019
      [10]
      M.Q. Zhang, Y. Feng, J.H. Zhang, S.J. Liu, Q. Yang, Z. Liu, R.G. Li, J. Meng, and R.Z. Wu, Development of extruded Mg–6Er–3Y–1.5Zn–0.4Mn (wt.%) alloy with high strength at elevated temperature, J. Mater. Sci. Technol., 35(2019), No. 10, p. 2365. doi: 10.1016/j.jmst.2019.05.053
      [11]
      R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, and S. Suwas, Ductility enhancement in Mg–0.2%Ce alloys, Acta Mater., 161(2018), p. 246. doi: 10.1016/j.actamat.2018.09.023
      [12]
      S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, and Z.Q. Zhang, Influence of specific second phases on corrosion behaviors of Mg–Zn–Gd–Zr alloys, Corros. Sci., 166(2020), art. No. 108419. doi: 10.1016/j.corsci.2019.108419
      [13]
      S.Y. Jin, H.Y. Liu, R.Z. Wu, F. Zhong, L.G. Hou, and J.H. Zhang, Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy, Mater. Sci. Eng. A, 788(2020), art. No. 139611. doi: 10.1016/j.msea.2020.139611
      [14]
      S.Q. Yin, Z.Q. Zhang, J.M. Yu, Z.L. Zhao, M. Liu, L. Bao, Z. Jia, J.Z. Cui, and P. Wang, Achieving excellent superplasticity of Mg–7Zn–5Gd–0.6Zr alloy at low temperature regime, Sci. Rep., 9(2019), No. 1, art. No. 4365. doi: 10.1038/s41598-018-38420-7
      [15]
      G. Wu, K.C. Chan, L.L. Zhu, L.G. Sun, and J. Lu, Dual-phase nanostructuring as a route to high-strength magnesium alloys, Nature, 545(2017), No. 7652, p. 80. doi: 10.1038/nature21691
      [16]
      Y. Yan, G.Q. Zhang, L.J. Chen, and X.W. Li, Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1450. doi: 10.1007/s12613-019-1839-0
      [17]
      Q. Yang, S.H. Lv, P.F. Qin, F.Z. Meng, X. Qiu, X.R. Hua, K. Guan, W. Sun, X.J. Liu, and J. Meng, Interphase boundary segregation induced phase transformation in a high-pressure die casting Mg–Al–La–Ca–Mn alloy, Mater. Des., 190(2020), art. No. 108566. doi: 10.1016/j.matdes.2020.108566
      [18]
      S.H. Lv, X.L. Lü, F.Z. Meng, Q. Yang, X. Qiu, P.F. Qin, Q. Duan, and J. Meng, Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg–4Al–3La–0.3Mn alloy, Mater. Sci. Eng. A, 773(2020), art. No. 138725. doi: 10.1016/j.msea.2019.138725
      [19]
      X.R. Hua, Q. Yang, D.D. Zhang, F.Z. Meng, C. Chen, Z.H. You, J.H. Zhang, S.H. Lv, and J. Meng, Microstructures and mechanical properties of a newly developed high-pressure die casting Mg–Zn–RE alloy, J. Mater. Sci. Technol., 53(2020), p. 174. doi: 10.1016/j.jmst.2020.04.030
      [20]
      P.F. Qin, Q. Yang, K. Guan, F.Z. Meng, S.H. Lv, B.S. Li, D.D. Zhang, N. Wang, J.H. Zhang, and J. Meng, Microstructures and mechanical properties of a high pressure die-cast Mg–4Al–4Gd–0.3Mn alloy, Mater. Sci. Eng. A, 764(2019), art. No. 138254. doi: 10.1016/j.msea.2019.138254
      [21]
      D.F. Shi, M.T. Pérez-Prado, and C.M. Cepeda-Jiménez, Effect of solutes on strength and ductility of Mg alloys, Acta Mater., 180(2019), p. 218. doi: 10.1016/j.actamat.2019.09.018
      [22]
      T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.-C. Suh, and N.J. Kim, Designing a magnesium alloy with high strength and high formability, Nat. Commun., 9(2018), No. 1, art. No. 2522. doi: 10.1038/s41467-018-04981-4
      [23]
      R.X. Zheng, T. Bhattacharjee, S. Gao, W. Gong, A. Shibata, T. Sasaki, K. Hono, and N. Tsuji, Change of deformation mechanisms leading to high strength and large ductility in Mg–Zn–Zr–Ca alloy with fully recrystallized ultrafine grained microstructures, Sci. Rep., 9(2019), No. 1, art. No. 11702. doi: 10.1038/s41598-019-48271-5
      [24]
      B. Kim, C.H. Hong, J.C. Kim, S.Y. Lee, S.M. Baek, H.Y. Jeong, and S.S. Park, Factors affecting the grain refinement of extruded Mg–6Zn–0.5Zr alloy by Ca addition, Scripta Mater., 187(2020), p. 24. doi: 10.1016/j.scriptamat.2020.06.001
      [25]
      E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. London Sect. B, 64(1951), No. 9, p. 747. doi: 10.1088/0370-1301/64/9/303
      [26]
      Z. Nasiri, S. Ghaemifar, M. Naghizadeh, and H. Mirzadeh, Thermal mechanisms of grain refinement in steels: A review, Met. Mater. Int.(2020). DOI: 10.1007/s12540-020-00700-1
      [27]
      H. Somekawa and T. Mukai, Hall–Petch relation for deformation twinning in solid solution magnesium alloys, Mater. Sci. Eng. A, 561(2013), p. 378. doi: 10.1016/j.msea.2012.10.040
      [28]
      T. Mukai and K. Higashi, Ductility enhancement of ultra fine-grained aluminum under dynamic loading, Scripta Mater., 44(2001), No. 8-9, p. 1493. doi: 10.1016/S1359-6462(01)00719-9
      [29]
      C.Q. Huang, J.X. Liu, and X.D. Jia, Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1140. doi: 10.1007/s12613-019-1852-3
      [30]
      K.A. Padmanabhan, G.P. Dinda, H. Hahn, and H. Gleiter, Inverse Hall–Petch effect and grain boundary sliding controlled flow in nanocrystalline materials, Mater. Sci. Eng. A, 452-453(2007), p. 462. doi: 10.1016/j.msea.2006.10.084
      [31]
      Y. Ito, K. Edalati, and Z. Horita, High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall–Petch relationship, Mater. Sci. Eng. A, 679(2017), p. 428. doi: 10.1016/j.msea.2016.10.066
      [32]
      H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall–Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248. doi: 10.1016/j.jmst.2017.07.022
      [33]
      H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, and Q. Liu, The mechanism for the high dependence of the Hall–Petch slope for twinning/slip on texture in Mg alloys, Acta Mater., 128(2017), p. 313. doi: 10.1016/j.actamat.2017.02.044
      [34]
      S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, and V.H. Hammond, Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy, Scripta Mater., 67(2012), No. 5, p. 439. doi: 10.1016/j.scriptamat.2012.05.017
      [35]
      Z.S. Wang, Y.J. Guan, T. Wang, Q. Zhang, X.T. Wei, X.Y. Fang, G.M. Zhu, and S. Gao, Microstructure and mechanical properties of AZ31 magnesium alloy sheets processed by constrained groove pressing, Mater. Sci. Eng. A, 745(2019), p. 450. doi: 10.1016/j.msea.2019.01.006
      [36]
      R. Ma, Y.Q. Zhao, and Y.N. Wang, Grain refinement and mechanical properties improvement of AZ31 Mg alloy sheet obtained by two-stage rolling, Mater. Sci. Eng. A, 691(2017), p. 81. doi: 10.1016/j.msea.2017.02.107
      [37]
      M. Gzyl, A. Rosochowski, R. Pesci, L. Olejnik, E. Yakushina, and P. Wood, Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP, Metall. Mater. Trans. A, 45(2014), No. 3, p. 1609. doi: 10.1007/s11661-013-2094-z
      [38]
      F. Zhao, T. Suo, B. Chen, and Y.L. Li, Strength–ductility combination of fine-grained magnesium alloy with high deformation twin density, J. Alloys Compd., 798(2019), p. 350. doi: 10.1016/j.jallcom.2019.05.260
      [39]
      J.A. del Valle, F. Carreño, and O.A. Ruano, Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling, Acta Mater., 54(2006), No. 16, p. 4247. doi: 10.1016/j.actamat.2006.05.018
      [40]
      W. Yuan, R.S. Mishra, B. Carlson, R.K. Mishra, R. Verma, and R. Kubic, Effect of texture on the mechanical behavior of ultrafine grained magnesium alloy, Scripta Mater., 64(2011), No. 6, p. 580. doi: 10.1016/j.scriptamat.2010.11.052
      [41]
      J.S. Wei, S.N. Jiang, Z.Y. Chen, and C.M. Liu, Increasing strength and ductility of a Mg–9Al alloy by dynamic precipitation assisted grain refinement during multi-directional forging, Mater. Sci. Eng. A, 780(2020), art. No. 139192. doi: 10.1016/j.msea.2020.139192
      [42]
      R.G. Li, H.R. Li, D.Y. Zhao, Y.Q. Dai, D.Q. Fang, J.H. Zhang, L. Zong, and J. Sun, High strength commercial AZ91D alloy with a uniformly fine-grained structure processed by conventional extrusion, Mater. Sci. Eng. A, 780(2020), art. No. 139193. doi: 10.1016/j.msea.2020.139193
      [43]
      S.H. Kim, J.U. Lee, Y.J. Kim, B.G. Moon, B.S. You, H.S. Kim, and S.H. Park, Improvement in extrudability and mechanical properties of AZ91 alloy through extrusion with artificial cooling, Mater. Sci. Eng. A, 703(2017), p. 1. doi: 10.1016/j.msea.2017.07.048
      [44]
      K.B. Nie, K.K. Deng, X.J. Wang, T. Wang, and K. Wu, Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging, Mater. Charact., 124(2017), p. 14. doi: 10.1016/j.matchar.2016.12.006
      [45]
      B.Q. Xu, J.P. Sun, Z.Q. Yang, L.R. Xiao, H. Zhou, J. Han, H. Liu, Y.N. Wu, Y.C. Yuan, X.R. Zhuo, D. Song, J.H. Jiang, and A.B. Ma, Microstructure and anisotropic mechanical behavior of the high-strength and ductility AZ91 Mg alloy processed by hot extrusion and multi-pass RD-ECAP, Mater. Sci. Eng. A, 780(2020), art. No. 139191. doi: 10.1016/j.msea.2020.139191
      [46]
      Z.F. Li, J. Dong, X.Q. Zeng, C. Lu, and W.J. Ding, Influence of Mg17Al12 intermetallic compounds on the hot extruded microstructures and mechanical properties of Mg–9Al–1Zn alloy, Mater. Sci. Eng. A, 466(2007), No. 1-2, p. 134. doi: 10.1016/j.msea.2007.02.029
      [47]
      M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano, Achieving high strength in commercial Mg cast alloys through large strain rolling, Mater. Lett., 59(2005), No. 26, p. 3299. doi: 10.1016/j.matlet.2005.04.061
      [48]
      M. Mabuchi, Y. Chino, H. Iwasaki, T. Aizawa, and K. Higashi, The grain size and texture dependence of tensile properties in extruded Mg–9Al–1Zn, Mater. Trans., 42(2001), No. 7, p. 1182. doi: 10.2320/matertrans.42.1182
      [49]
      X. Luo, Z.Q. Feng, T.B. Yu, J.Q. Luo, T.L. Huang, G.L. Wu, N. Hansen, and X.X. Huang, Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg–3Gd, Acta Mater., 183(2020), p. 398. doi: 10.1016/j.actamat.2019.11.034
      [50]
      B. Guan, Y.C. Xin, X.X. Huang, P.D. Wu, and Q. Liu, Quantitative prediction of texture effect on Hall–Petch slope for magnesium alloys, Acta Mater., 173(2019), p. 142. doi: 10.1016/j.actamat.2019.05.016
      [51]
      U.M. Chaudry, K. Hamad, and J.G. Kim, On the ductility of magnesium based materials: A mini review, J. Alloys Compd., 792(2019), p. 652. doi: 10.1016/j.jallcom.2019.04.031
      [52]
      E.C. Burke and W.R. Hibbard, Plastic deformation of magnesium single crystals, JOM, 4(1952), No. 3, p. 295. doi: 10.1007/BF03397694
      [53]
      R.E. Reed-Hill and W.D. Robertson, Deformation of magnesium single crystals by nonbasal slip, JOM, 9(1957), No. 4, p. 496. doi: 10.1007/BF03397907
      [54]
      R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca, and J.M. Molina-Aldareguia, Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation, Acta Mater., 71(2014), p. 283. doi: 10.1016/j.actamat.2014.03.014
      [55]
      S. Ando, H. Tonda, K. Nakamura, and K. Takashima, {11 $ \bar 2 $ \normalsize 2}< $ \bar 1 $ \normalsize $ \bar 1 $ \normalsize 23> slip in magnesium single crystal, J. Jpn. Inst. Light Met., 42(1992), No. 12, p. 765. doi: 10.2464/jilm.42.765
      [56]
      E.W. Kelly and W.F. Hosford, Plane-strain compression of magnesium and magnesium alloy crystals, Trans. Metall. Soc. AIME, 242(1968), No. 1, p. 5.
      [57]
      S.R. Agnew, Deformation mechanisms of magnesium alloys, [in] C. Bettles and M. Barnett, eds., Advances in Wrought Magnesium Alloys, Woodhead Publishing, Cambridge, 2012, p. 63.
      [58]
      S.R. Angew and Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast., 21(2005), No. 6, p. 1161. doi: 10.1016/j.ijplas.2004.05.018
      [59]
      R. von Mises, Mechanics of the ductile form changes of crystals, Z. Angew. Math. Mech., 8(1928), p. 161. doi: 10.1002/zamm.19280080302
      [60]
      G.I. Taylor, Plastic strain in metals, J. Inst. Met., 62(1938), p. 307.
      [61]
      C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado, Effect of grain size on slip activity in pure magnesium polycrystals, Acta Mater., 84(2015), p. 443. doi: 10.1016/j.actamat.2014.10.001
      [62]
      Z.X. Wu and W.A. Curtin, The origins of high hardening and low ductility in magnesium, Nature, 526(2015), No. 7571, p. 62. doi: 10.1038/nature15364
      [63]
      L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S.Godet, Twinning and texture development in two Mg alloys subjected to loading along three different strain paths, Acta Mater., 55(2007), No. 11, p. 3899. doi: 10.1016/j.actamat.2007.03.006
      [64]
      Q.M. Peng, Y. Sun, J. Wang, Q. Zu, M. Yang, and H. Fu, Structural characteristics of {10 $ \bar 1 $ \normalsize 1} contraction twin–twin interaction in magnesium, Acta Mater., 192(2020), p. 60. doi: 10.1016/j.actamat.2020.03.035
      [65]
      M. Duan, L. Luo, and Y. Liu., Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient, J. Alloys Compd., 823(2020), art. No. 153691. doi: 10.1016/j.jallcom.2020.153691
      [66]
      B. Pourbahari, H. Mirzadeh, M. Emamy, and R. Roumina, Enhanced ductility of a fine-grained Mg–Gd–Al–Zn magnesium alloy by hot extrusion, Adv. Eng. Mater., 20(2018), No. 8, art. No. 1701171. doi: 10.1002/adem.201701171
      [67]
      B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang, and C.C. Dong, Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures, Scripta Mater., 63(2010), No. 10, p. 1024. doi: 10.1016/j.scriptamat.2010.07.038
      [68]
      D. Ando, J. Koike, and Y. Sutou, Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys, Acta Mater., 58(2010), No. 13, p. 4316. doi: 10.1016/j.actamat.2010.03.044
      [69]
      J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Mater., 51(2003), No. 7, p. 2055. doi: 10.1016/S1359-6454(03)00005-3
      [70]
      J. Koike, N. Fujiyama, D. Ando, and Y. Sutou, Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys, Scripta Mater., 63(2010), No. 7, p. 747. doi: 10.1016/j.scriptamat.2010.03.021
      [71]
      N. Tsuji, S. Ogata, H. Inui, I. Tanaka, K. Kishida, S. Gao, W.Q. Mao, Y. Bai, R.X. Zheng, and J.P. Du, Strategy for managing both high strength and large ductility in structural materials–Sequential nucleation of different deformation modes based on a concept of plaston, Scripta Mater., 181(2020), p. 35. doi: 10.1016/j.scriptamat.2020.02.001
      [72]
      M.R. Barnett, A rationale for the strong dependence of mechanical twinning on grain size, Scripta Mater., 59(2008), No. 7, p. 696. doi: 10.1016/j.scriptamat.2008.05.027
      [73]
      M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: A constitutive description, Acta Mater., 49(2001), No. 19, p. 4025. doi: 10.1016/S1359-6454(01)00300-7
      [74]
      J.Z. Li, W. Xu, X.L. Wu, H. Ding, and K.N. Xia, Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5993. doi: 10.1016/j.msea.2011.04.045
      [75]
      Y. Chino, K. Kimura, and M. Mabuchi, Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 481. doi: 10.1016/j.msea.2007.09.058
      [76]
      J. Koike, Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature, Metall. Mater. Trans. A, 36(2005), No. 7, p. 1689. doi: 10.1007/s11661-005-0032-4
      [77]
      C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado, Origin of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium, Acta Mater., 88(2015), p. 232. doi: 10.1016/j.actamat.2015.01.032
      [78]
      Z.T. Jiang, X. Meng, B. Jiang, S. Jiang, J.H. Dai, J.R. Dong, and Y.F. Ding, Grain refinement of Mg–3Y alloy using Mg–10Al2Y master alloy, J. Rare Earths(2020). DOI: 10.1016/j.jre.2020.07.016
      [79]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [80]
      A. Vinogradov and Y. Estrin, Analytical and numerical approaches to modelling severe plastic deformation, Prog. Mater. Sci., 95(2018), p. 172. doi: 10.1016/j.pmatsci.2018.02.001
      [81]
      S. Amani and G. Faraji, Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 672. doi: 10.1007/s12613-018-1614-7
      [82]
      A. Torkian, G. Faraji, and M.S. Pedram, Mechanical properties and in vivo biodegradability of Mg–Zr–Y–Nd–La magnesium alloy produced by a combined severe plastic deformation, Rare Met.(2019). DOI: 10.1007/s12598-019-01353-9
      [83]
      H. Liu, J. Ju, X.W. Yang, Y.H. Li, J.H. Jiang, and A.B. Ma, Microstructure and mechanical property of Mg–10Gd–2Y–1.5Zn–0.5Zr alloy processed by eight-pass equal-channel angular pressing, Rare Met.(2018). DOI: 10.1007/s12598-018-1022-1
      [84]
      V.M. Segal, Plastic working of metals by simple shear, Russ. Metall., 1(1981), p. 99.
      [85]
      A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann., 57(2008), No. 2, p. 716. doi: 10.1016/j.cirp.2008.09.005
      [86]
      N.S. Martynenko, E.A. Lukyanova, V.N. Serebryany, M.V. Gorshenkov, I.V. Shchetinin, G.I. Raab, S.V. Dobatkin, and Y. Estrin, Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing, Mater. Sci. Eng. A, 712(2018), p. 625. doi: 10.1016/j.msea.2017.12.026
      [87]
      L.B. Tong, J.H. Chu, Z.H. Jiang, S. Kamado, and M.Y. Zheng, Ultra-fine grained Mg–Zn–Ca–Mn alloy with simultaneously improved strength and ductility processed by equal channel angular pressing, J. Alloys Compd., 785(2019), p. 410. doi: 10.1016/j.jallcom.2019.01.181
      [88]
      Y.T. Fu, J.P. Sun, Z.Q. Yang, B.Q. Xu, J. Han, Y.F. Chen, J.H. Jiang, and A.B. Ma, Aging behavior of a fine-grained Mg–10.6Gd–2Ag alloy processed by ECAP, Mater. Charact., 165(2020), art. No. 110398. doi: 10.1016/j.matchar.2020.110398
      [89]
      X.P. Zhang, Z.Y. Zhang, H.X. Wang, Y.P. Zhuang, L.F. Wang, W.L. Cheng, and W. Liang, Synergistic effect of broken Mg2Si and sub-micron Mg17Al12 induced by EX- ECAP on the strength and ductility of deformed Mg–4Al–1Si–1Gd alloy, J. Mater. Res. Technol., 9(2020), No. 3, p. 4230. doi: 10.1016/j.jmrt.2020.02.049
      [90]
      K.N. Li, Y.B. Zhang, Q. Zeng, G.H. Huang, B. Ji, and D.D. Yin, Effects of semisolid treatment and ECAP on the microstructure and mechanical properties of Mg–6.52Zn–0.95Y alloy with icosahedral phase, Mater. Sci. Eng. A, 751(2019), p. 283. doi: 10.1016/j.msea.2019.02.083
      [91]
      M.A. Salevati, F. Akbaripanah, R. Mahmudi, K.H. Fekete, A. Heczel, and J. Gubicza, Comparison of the effects of isothermal equal channel angular pressing and multi-directional forging on mechanical properties of AM60 magnesium alloy, Mater. Sci. Eng. A, 776(2020), art. No. 139002. doi: 10.1016/j.msea.2020.139002
      [92]
      B. Li, B.G. Teng, and G.X. Chen, Microstructure evolution and mechanical properties of Mg–Gd–Y–Zn–Zr alloy during equal channel angular pressing, Mater. Sci. Eng. A, 744(2019), p. 396. doi: 10.1016/j.msea.2018.12.024
      [93]
      Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process, Acta Mater., 47(1999), No. 2, p. 579. doi: 10.1016/S1359-6454(98)00365-6
      [94]
      Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater., 39(1998), No. 9, p. 1221. doi: 10.1016/S1359-6462(98)00302-9
      [95]
      D. Rahmatabadi, M. Tayyebi, R. Hashemi, and G. Faraj, Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB process, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 564. doi: 10.1007/s12613-018-1603-x
      [96]
      H.J. Wu, T.Z. Wang, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, and M.L. Zhang, Microstructure and mechanical properties of Mg–5Li–1Al sheets processed by cross accumulative roll bonding, J. Manuf. Processes, 46(2019), p. 139. doi: 10.1016/j.jmapro.2019.09.004
      [97]
      X. Luo, T.L. Huang, Y.H. Wang, Y.C. Xin, and G.L. Wu, Strong and ductile AZ31 Mg alloy with a layered bimodal structure, Sci. Rep., 9(2019), No. 1, art. No. 5428. doi: 10.1038/s41598-019-41987-4
      [98]
      X. Luo, Z.Q. Feng, T.B. Yu, T.L. Huang, R.G. Li, G.L. Wu, N. Hansen, and X.X. Huang, Microstructural evolution in Mg–3Gd during accumulative roll-bonding, Mater. Sci. Eng. A, 772(2020), art. No. 138763. doi: 10.1016/j.msea.2019.138763
      [99]
      L.G. Hou, T.Z. Wang, R.Z. Wu, J,H, Zhang, M.L. Zhang, A.P. Dong, B.D. Sun, S. Betsofen, and B. Krit, Microstructure and mechanical properties of Mg–5Li–1Al sheets prepared by accumulative roll bonding, J. Mater. Sci. Technol., 34(2018), No. 2, p. 317. doi: 10.1016/j.jmst.2017.02.005
      [100]
      H.P. Zheng, R.Z. Wu, L.G. Hou, M. Qiu, F. Gao, J.H. Zhang, and M.L. Zhang, Microstructure and mechanical properties of Mg–14Li–3Al–2Gd alloy processed by multilayer accumulative roll bonding, Adv. Eng. Mater., 22(2020), No. 2, art. No. 1900774. doi: 10.1002/adem.201900774
      [101]
      X.X. Rao, Y.P. Wu, X.B. Pei, Y.H. Jing, L. Luo, Y. Liu, and J. Lu, Influence of rolling temperature on microstructural evolution and mechanical behavior of AZ31 alloy with accumulative roll bonding, Mater. Sci. Eng. A, 754(2019), p. 112. doi: 10.1016/j.msea.2019.03.047
      [102]
      P.W. Bridgeman, Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure, 1st ed., McGraw-Hill, New York, 1952.
      [103]
      W.T. Sun, X.G. Qiao, M.Y. Zheng, Y. He, N. Hu, C. Xu, N. Gao, and M.J. Starink, Exceptional grain refinement in a Mg alloy during high pressure torsion due to rare earth containing nanosized precipitates, Mater. Sci. Eng. A, 728(2018), p. 115. doi: 10.1016/j.msea.2018.05.021
      [104]
      I. Saunders and J. Nutting, Deformation of metals to high strains using combination of torsion and compression, Met. Sci., 18(1984), No. 12, p. 571. doi: 10.1179/030634584790419629
      [105]
      K. Bryła, J. Morgiel, M. Faryna, K. Edalati, and Z. Horita, Effect of high-pressure torsion on grain refinement, strength enhancement and uniform ductility of EZ magnesium alloy, Mater. Lett., 212(2018), p. 323. doi: 10.1016/j.matlet.2017.10.113
      [106]
      R.X. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, and N. Tsuji, Simultaneously enhanced strength and ductility of Mg–Zn–Zr–Ca alloy with fully recrystallized ultrafine grained structures, Scripta Mater., 131(2017), p. 1. doi: 10.1016/j.scriptamat.2016.12.024
      [107]
      S.A. Torbati-Sarraf, R. Alizadeh, R. Mahmudi, and T.G. Langdon, Evaluating the flow properties of a magnesium ZK60 alloy processed by high-pressure torsion: A comparison of two different miniature testing techniques, Mater. Sci. Eng. A, 708(2017), p. 432. doi: 10.1016/j.msea.2017.10.009
      [108]
      R. Kocich, L. Kunčická, P. Král, and T.C. Lowe, Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion, Mater. Des., 90(2016), p. 1092. doi: 10.1016/j.matdes.2015.11.062
      [109]
      A. Hanna, H. Azzeddine, R. Lachhab, T. Baudin, A.L. Helbert, F. Brisset, Y. Huang, D. Bradai, and T.G. Langdon, Evaluating the textural and mechanical properties of an Mg–Dy alloy processed by high-pressure torsion, J. Alloys Compd., 778(2019), p. 61. doi: 10.1016/j.jallcom.2018.11.109
      [110]
      W.T. Sun, X.G. Qiao, M.Y. Zheng, C. Xu, N. Gao, and M.J. Starink, Microstructure and mechanical properties of a nanostructured Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr supersaturated solid solution prepared by high pressure torsion, Mater. Des., 135(2017), p. 366. doi: 10.1016/j.matdes.2017.09.048
      [111]
      W.T. Sun, X.G. Qiao, M.Y. Zheng, X.J. Zhao, H.W. Chen, N. Gao, and M.J. Starink, Achieving ultra-high hardness of nanostructured Mg–8.2Gd–3.2Y–1.0Zn–0.4Zr alloy produced by a combination of high pressure torsion and ageing treatment, Scripta Mater., 155(2018), p. 21. doi: 10.1016/j.scriptamat.2018.06.009
      [112]
      W.T. Sun, X.G. Qiao, M.Y. Zheng, C. Xu, S. Kamado, X.J. Zhao, H.W. Chen, N. Gao, and M.J. Starink, Altered ageing behaviour of a nanostructured Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr alloy processed by high pressure torsion, Acta Mater., 151(2018), p. 260. doi: 10.1016/j.actamat.2018.04.003
      [113]
      J.H. Wang, Y.S. Li, and R. Xu, The thermal stability and activation energy of the nanocrystalline Mg–Zn–Y alloy obtained by high pressure torsion, Mater. Lett., 268(2020), art. No. 127607. doi: 10.1016/j.matlet.2020.127607
      [114]
      A.H. Baghdadi, Z. Sajuri, N.F.M. Selamat, M.Z. Omar, Y. Miyashita, and A.H. Kokabi, Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1285. doi: 10.1007/s12613-019-1834-5
      [115]
      A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
      [116]
      B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, and E.H. Han, Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg–Zn–Y–Zr alloy, Int. J. Fatigue, 120(2019), p. 46. doi: 10.1016/j.ijfatigue.2018.10.019
      [117]
      K. Hono, C.L. Mendis, T.T. Sasaki, and K. Oh-ishi, Towards the development of heat-treatable high-strength wrought Mg alloys, Scripta Mater., 63(2010), No. 7, p. 710. doi: 10.1016/j.scriptamat.2010.01.038
      [118]
      L.R. Xiao, X.F. Chen, Y. Cao, H. Zhou, X.L. Ma, D.D. Yin, B. Ye, X.D. Han, and Y.T. Zhu, Solute segregation assisted nanocrystallization of a cold-rolled Mg–Ag alloy during annealing, Scripta Mater., 177(2020), p. 69. doi: 10.1016/j.scriptamat.2019.10.012
      [119]
      Z.R. Zeng, Y.M. Zhu, R.L. Liu, S.W. Xu, C.H.J. Davies, J.F. Nie, and N. Birbilis, Achieving exceptionally high strength in Mg–3Al–1Zn–0.3Mn extrusions via suppressing intergranular deformation, Acta Mater., 160(2018), p. 97. doi: 10.1016/j.actamat.2018.08.045
      [120]
      H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, and G.W. Qin, Mechanistic investigation of a low-alloy Mg–Ca-based extrusion alloy with high strength–ductility synergy, Acta Mater., 186(2020), p. 278. doi: 10.1016/j.actamat.2020.01.017
      [121]
      H.Y. Wang, Z.P. Yu, L. Zhang, C.G. Liu, M. Zha, C. Wang, and Q.C. Jiang, Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process, Sci. Rep., 5(2015), art. No. 17100. doi: 10.1038/srep17100
      [122]
      X.X. Wei, L. Jin, F.H. Wang, J. Li, N. Ye, Z.Y. Zhang, and J. Dong, High strength and ductility Mg–8Gd–3Y–0.5Zr alloy with bimodal structure and nano-precipitates, J. Mater. Sci. Technol., 44(2020), p. 19. doi: 10.1016/j.jmst.2019.10.024
      [123]
      P. Peng, X.J.C. He, J. She, A.T. Tang, M. Rashad, S.B. Zhou, G. Zhang, X.X. Mi, and F.S. Pan, Novel low-cost magnesium alloys with high yield strength and plasticity, Mater. Sci. Eng. A, 766(2019), art. No. 138332. doi: 10.1016/j.msea.2019.138332
      [124]
      X.Y. Wang, Y.F. Wang, C. Wang, S. Xu, J. Rong, Z.Z. Yang, J.G. Wang, and H.Y. Wang, A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg–6Al–4Zn alloy, J. Mater. Sci. Technol., 49(2020), p. 117. doi: 10.1016/j.jmst.2019.04.048
      [125]
      J. Rong, P.Y. Wang, M. Zha, C. Wang, X.Y. Xu, H.Y. Wang, and Q.C. Jiang, Development of a novel strength ductile Mg–7Al–5Zn alloy with high superplasticity processed by hard-plate rolling (HPR), J. Alloys Compd., 738(2018), p. 246. doi: 10.1016/j.jallcom.2017.11.348
      [126]
      X.Q. Liu, X.G. Qiao, Z.T. Li, and M.Y. Zheng, High strength and excellent ductility of dilute Mg–0.68Al–0.32Ca–0.50Mn (wt%) extrusion alloy obtained by T6 treatment, Mater. Character., 162(2020), art. No. 110197. doi: 10.1016/j.matchar.2020.110197
      [127]
      R.G. Li, H.B. Shafqat, J.H. Zhang, R.Z. Wu, G.Y. Fu, L. Zong, and Y. Su, Cold-working mediated converse age hardening responses in extruded Mg–14Gd–2Ag–0.5Zr alloy with different microstructure, Mater. Sci. Eng. A, 748(2019), p. 95. doi: 10.1016/j.msea.2019.01.082
      [128]
      R.G. Li, D.Y. Zhao, J.H. Zhang, H.R. Li, Y.Q. Dai, and D.Q. Fang, Room temperature yielding phenomenon in extruded or/and aged Mg–14Gd–2Ag–0.5Zr alloy with fine-grained microstructure, Mater. Sci. Eng. A, 787(2020), art. No. 139551. doi: 10.1016/j.msea.2020.139551

    Catalog


    • /

      返回文章
      返回