留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(12)

数据统计

分享

计量
  • 文章访问数:  4043
  • HTML全文浏览量:  1243
  • PDF下载量:  51
  • 被引次数: 0
Menghao Liu, Zhiyong Liu, Cuiwei Du, Xiaoqin Zhan, Xiaojia Yang,  and Xiaogang Li, Stress corrosion cracking behavior of high-strength mooring-chain steel in the SO2-polluted coastal atmosphere, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1186-1196. https://doi.org/10.1007/s12613-020-2192-z
Cite this article as:
Menghao Liu, Zhiyong Liu, Cuiwei Du, Xiaoqin Zhan, Xiaojia Yang,  and Xiaogang Li, Stress corrosion cracking behavior of high-strength mooring-chain steel in the SO2-polluted coastal atmosphere, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1186-1196. https://doi.org/10.1007/s12613-020-2192-z
引用本文 PDF XML SpringerLink
研究论文

高强系泊链钢在二氧化硫污染海洋大气环境下的应力腐蚀行为

  • 通讯作者:

    刘智勇    E-mail: dcw@ustb.edu.cn

    杜翠薇    E-mail: dcw@ustb.edu.cn

文章亮点

  • (1) 系统地研究了不同含量硫含量对高强系泊链钢海洋大气下应力腐蚀行为的影响规律.
  • (2) 系统地研究了不同含量硫含量对高强系泊链钢海洋大气下腐蚀行为的影响规律.
  • (3) 阐明了高强系泊链钢在含硫污染大气环境下的应力腐蚀机理
  • 随着陆地油气资源枯竭,越来越多的国家正在寻求开发利用海洋资源。为避免海上石油平台在海啸、台风和巨浪等恶劣环境倒塌,抗拉强度高达1000 MPa的R5级系泊链钢被广泛应用于海上石油平台。然而,以往的研究证明应力腐蚀开裂是导致系泊链钢失效的主要因素。因此,研究系泊钢的应力腐蚀过程具有重要意义。本文旨在研究海洋大气环境下硫化物浓度对系泊链钢应力腐蚀行为的影响规律及机制。本文采用了慢应变速率拉伸、电子背散射衍射和扫描电镜研究了硫化物浓度对系泊链钢应力腐蚀行为的影响规律,采用了电化学极化、X射线光电子能谱和X射线能谱等手段研究了不同硫化物浓度对系泊链钢腐蚀行为的影响,以此为基础阐明了高强系泊链钢在海洋大气环境下的应力腐蚀机制。研究结果表明,随着模拟海洋大气环境中SO2污染程度的增加,腐蚀电流密度增大,腐蚀产物致密性更高,更易萌生点蚀。随着模拟海洋大气环境中SO2污染程度的增加,系泊链钢的应力腐蚀敏感性增大。断口结果表明应力腐蚀裂纹萌生于点蚀,裂纹以沿晶和穿晶混合的方式扩展。由此总结系泊链钢在该环境下的应力腐蚀由阳极溶解机制和氢脆机制共同控制。
  • Research Article

    Stress corrosion cracking behavior of high-strength mooring-chain steel in the SO2-polluted coastal atmosphere

    + Author Affiliations
    • 21Cr2NiMo steel is widely used to stabilize offshore oil platforms; however, it suffers from stress-corrosion cracking (SCC). Herein, we studied the SCC behavior of 21Cr2NiMo steel in SO2-polluted coastal atmospheres. Electrochemical tests revealed that the addition of SO2 increased the corrosion current. Rust characterization showed that SO2 addition densified the corrosion products and promoted pitting. Furthermore, slow strain rate tests demonstrated a high susceptibility to SCC in high SO2 contents. Fracture morphologies revealed that the stress-corrosion cracks initiated at corrosion pits and the crack propagation showed transgranular and intergranular cracking modes. In conclusion, SCC is mix-controlled by anodic dissolution and hydrogen embrittlement mechanisms.
    • loading
    • [1]
      Y.F. Wang, G.X. Cheng, W. Wu, and Y. Li, Role of inclusions in the pitting initiation of pipeline steel and the effect of electron irradiation in SEM, Corros. Sci., 130(2018), p. 252. doi: 10.1016/j.corsci.2017.10.029
      [2]
      K. Gong, M. Wu, and G.X. Liu, Stress corrosion cracking behavior of rusted X100 steel under the combined action of Cl and $ {\mathrm{H}\mathrm{S}\mathrm{O}}_{3}^{-} $ in a wet–dry cycle environment, Corros. Sci., 165(2020), art. No. 108382. doi: 10.1016/j.corsci.2019.108382
      [3]
      R. Pérez-Mora, T. Palin-Luc, C. de Bathias, and P.C Paris, Very high cycle fatigue of a high strength steel under sea water corrosion: A strong corrosion and mechanical damage coupling, Int. J. Fatigue, 74(2015), p. 156. doi: 10.1016/j.ijfatigue.2015.01.004
      [4]
      G. Artola, A. Arredondo, A. Fernández-Calvo, and J. Aldazabal, Hydrogen embrittlement susceptibility of R4 and R5 high-strength mooring steels in cold and warm seawater, Metals, 8(2018), No. 9, art. No. 700. doi: 10.3390/met8090700
      [5]
      R. Nevshupa, I. Martinez, S. Ramos, and A. Arredondo, The effect of environmental variables on early corrosion of high-strength low-alloy mooring steel immersed in seawater, Mar. Struct., 60(2018), p. 226. doi: 10.1016/j.marstruc.2018.04.003
      [6]
      J.H. Bulloch, Some effects of yield strength on the stress corrosion cracking behaviour of low alloy steels in aqueous environments at ambient temperatures, Eng. Fail. Anal., 11(2004), No. 6, p. 843. doi: 10.1016/j.engfailanal.2004.03.006
      [7]
      T.M. Zhang, W.M. Zhao, T.T. Li, Y.J. Zhao, Q.S. Deng, Y. Wang, and W.C. Jiang, Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation, Corros. Sci., 131(2018), p. 104. doi: 10.1016/j.corsci.2017.11.013
      [8]
      E. Fontaine, A. Kilner, C. Carra, D. Washington, K.T. Ma, A. Phadke, D. Laskowski, and G. Kusinski, Industry survey of past failures, pre-emptive replacements and reported degradations for mooring systems of floating production units, [in] Offshore Technology Conference, Houston, 2014.
      [9]
      A. Kvitrud, Lessons learned from Norwegian mooring line failures 2010–2013, [in] ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, 2014.
      [10]
      K.T. Ma, A historical review on integrity issues of permanent mooring systems, [in] Offshore Technology Conference, Houston, 2013.
      [11]
      R. D'Souza and S. Majhi, Application of lessons learned from field experience to design, installation and maintenance of FPS moorings, [in] Offshore Technology Conference, Houston, 2013.
      [12]
      W.K. Hao, Z.Y. Liu, W. Wu, X.G. Li, C.W. Du, and D.W. Zhang, Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments, Mater. Sci. Eng. A, 710(2018), p. 318. doi: 10.1016/j.msea.2017.10.042
      [13]
      H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, C.Y. Li, and X.G. Li, Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater, Mater. Sci. Eng. A, 642(2015), p. 22. doi: 10.1016/j.msea.2015.05.109
      [14]
      C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking, Int. J. Hydrogen Energy, 34(2009), No. 24, p. 9879. doi: 10.1016/j.ijhydene.2009.09.090
      [15]
      L.M. Feng, H.Q. Shen, Y.J. Zhu, H.W. Gao, and X.H. Yao, Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres, Sci. Rep., 7(2017), art. No. 41260. doi: 10.1038/srep41260
      [16]
      D.J. Kong, Y.Z. Wu, and D. Long, Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions, J. Iron Steel Res. Int., 20(2013), No. 1, p. 40. doi: 10.1016/S1006-706X(13)60042-4
      [17]
      A. Nishikata, Y. Ichihara, Y. Hayashi, and T. Tsuru, Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron, J. Electrochem. Soc., 144(1997), No. 4, p. 1244. doi: 10.1149/1.1837578
      [18]
      I.M. Allam, J.S. Arlow, and H. Saricimen, Initial stages of atmospheric corrosion of steel in the Arabian Gulf, Corros. Sci., 32(1991), No. 4, p. 417. doi: 10.1016/0010-938X(91)90123-7
      [19]
      K. Asami and M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal–industrial atmosphere for 17 years, Corros. Sci., 45(2003), No. 11, p. 2671. doi: 10.1016/S0010-938X(03)00070-2
      [20]
      W.J. Chen, L. Hao, J.H. Dong, and W. Ke, Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere, Corros. Sci., 83(2014), p. 155. doi: 10.1016/j.corsci.2014.02.010
      [21]
      E. Akiyama, K. Matsukado, M.Q. Wang, and K. Tsuzaki, Evaluation of hydrogen entry into high strength steel under atmospheric corrosion, Corros. Sci., 52(2010), No. 9, p. 2758. doi: 10.1016/j.corsci.2009.11.046
      [22]
      R. Nishimura, D. Shiraishi, and Y. Maeda, Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet–dry SO2 environment, Corros. Sci., 46(2004), No. 1, p. 225. doi: 10.1016/S0010-938X(03)00141-0
      [23]
      H.C. Ma, C.W. Du, Z.Y. Liu, W.K. Hao, X.G. Li, and C. Liu, Stress corrosion behaviors of E690 high-strength steel in SO2-polluted marine atmosphere, Acta Metall. Sinica, 52(2016), No. 3, p. 331.
      [24]
      H.C. Ma, C.W. Du, Z.Y. Liu, and X.G. Li, Effect of SO2 content on SCC behavior of E690 high-strength steel in SO2-polluted marine atmosphere, Ocean Eng., 164(2018), p. 256. doi: 10.1016/j.oceaneng.2018.06.051
      [25]
      H. Alawi, A. Ragab, and M. Shaban, Stress corrosion cracking of some steels in various environments, Eng. Fract. Mech., 32(1989), No. 1, p. 29. doi: 10.1016/0013-7944(89)90203-8
      [26]
      M.H. Liu, Z.Y. Liu, C.W. Du, X.Q. Zhan, C.D Dai, Y. Pan, and X.G. Li, Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater, Int. J. Miner. Metall. Mater., 29(2021), No. 2, p. 263. doi: 10.1007/s12613-020-2199-5
      [27]
      X.Y. Cheng, H.X. Zhang, H. Li, and H.P. Shen, Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel, Mater. Sci. Eng. A, 636(2015), p. 164. doi: 10.1016/j.msea.2015.03.102
      [28]
      Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li, and X.G. Li, Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments, Mater. Sci. Eng. A, 658(2016), p. 348. doi: 10.1016/j.msea.2016.02.019
      [29]
      M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater., 70(2014), p. 174. doi: 10.1016/j.actamat.2014.01.048
      [30]
      L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion, Corros. Sci., 54(2012), p. 244. doi: 10.1016/j.corsci.2011.09.023
      [31]
      D.D.N. Singh, S. Yadav, and J.K. Saha, Role of climatic conditions on corrosion characteristics of structural steels, Corros. Sci., 50(2008), No. 1, p. 93. doi: 10.1016/j.corsci.2007.06.026
      [32]
      P. Graat and M.A.J. Somers, Quantitative analysis of overlapping XPS peaks by spectrum reconstruction: Determination of the thickness and composition of thin iron oxide films, Surf. Interface Anal., 26(1998), No. 11, p. 773. doi: 10.1002/(SICI)1096-9918(199810)26:11<773::AID-SIA419>3.0.CO;2-#
      [33]
      C.R. Brundle, T.J. Chuang, and K. Wandelt, Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron, Surf. Sci., 68(1977), p. 459. doi: 10.1016/0039-6028(77)90239-4
      [34]
      G. Kurbatov, E. Darque-Ceretti, and M. Aucouturier, Characterization of hydroxylated oxide film on iron surfaces and its acid–base properties using XPS, Surf. Interface Anal., 18(1992), No. 12, p. 811. doi: 10.1002/sia.740181206
      [35]
      M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, and M. Gautier-Soyer, Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium, Appl. Surf. Sci., 165(2000), No. 4, p. 288. doi: 10.1016/S0169-4332(00)00443-8
      [36]
      M. Zhu, Q. Zhang, Y.F. Yuan, and S.Y. Guo, Effect of microstructure and passive film on corrosion resistance of 2507 super duplex stainless steel prepared by different cooling methods in simulated marine environment, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1100. doi: 10.1007/s12613-020-2094-0
      [37]
      T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254(2008), p. 2441. doi: 10.1016/j.apsusc.2007.09.063
      [38]
      D.A. López, W.H. Schreiner, S.R. de Sánchez, and S.N. Simison, The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: An XPS and SEM characterization, Appl. Surf. Sci., 236(2004), No. 1-4, p. 77. doi: 10.1016/j.apsusc.2004.03.247
      [39]
      R.St.C. Smart, W.M. Skinner, and A.R. Gerson, XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental sulphur, Surf. Interface Anal., 28(1999), No. 1, p. 101. doi: 10.1002/(SICI)1096-9918(199908)28:1<101::AID-SIA627>3.0.CO;2-0
      [40]
      E. McCafferty, Thermodynamics of corrosion: Pourbaix diagrams, [in] Introduction to Corrosion Science, Springer, New York, 2009, p. 95.
      [41]
      M.B. Ives, Y.C. Lu, and J.L. Luo, Cathodic reactions involved in metallic corrosion in chlorinated saline environments, Corros. Sci., 32(1991), No. 1, p. 91. doi: 10.1016/0010-938X(91)90065-W
      [42]
      Y.B. Hu, C.F. Dong, M. Sun, K. Xiao, P. Zhong, and X.G. Li, Effects of solution pH and Cl on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments, Corros. Sci., 53(2011), No. 12, p. 4159. doi: 10.1016/j.corsci.2011.08.024
      [43]
      M. Stratmann and J. Müller, The mechanism of the oxygen reduction on rust-covered metal substrates, Corros. Sci., 36(1994), No. 2, p. 327. doi: 10.1016/0010-938X(94)90161-9
      [44]
      W. Wu, X.Q. Cheng, H.X. Hou, B. Liu, and X.G. Li, Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere, Appl. Surf. Sci., 436(2018), p. 80. doi: 10.1016/j.apsusc.2017.12.018
      [45]
      P. Liang, X.G. Li, C.W. Du, and X. Chen, Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution, Mater. Des., 30(2009), No. 5, p. 1712. doi: 10.1016/j.matdes.2008.07.012
      [46]
      G. van Boven, W. Chen, and R. Rogge, The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence, Acta Mater., 55(2007), No. 1, p. 29. doi: 10.1016/j.actamat.2006.08.037
      [47]
      Z.Y. Liu, X.G. Li, and Y.F. Cheng, Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization, Corros. Sci., 55(2012), p. 54. doi: 10.1016/j.corsci.2011.10.002
      [48]
      P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, and Y. Tian, Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 63. doi: 10.1007/s12613-019-1870-1
      [49]
      R. Matsumoto, M. Riku, S. Taketomi, and N. Miyazaki, Hydrogen–grain boundary interaction in Fe, Fe–C, and Fe–N systems, Prog. Nucl. Sci. Technol., 2(2011), p. 9. doi: 10.15669/pnst.2.9

    Catalog


    • /

      返回文章
      返回