Cite this article as: |
Thongsuk Sichumsaeng, Nutthakritta Phromviyo, Supree Pinitsoontorn, Pinit Kidkhunthod, Narong Chanlek, and Santi Maensiri, Synthesis, characterization and magnetic properties of KFeO2 nanoparticles prepared by a simple egg white solution route, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 128-135. https://doi.org/10.1007/s12613-020-2194-x |
Santi Maensiri E-mail: antimaensiri@gmail.com
铁酸钾(KFeO2)是一种有趣的碱金属铁氧体,已广泛用作脱氢催化剂[12]和钾离子电池正极材料,而根据合成方法的不同,它经常会显示出有趣的特性。在本文中我们报道了一种简单,低成本,环保的通过蛋白溶液合成KFeO2纳米颗粒的方法。采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和X射线近边吸收光谱(XANES)对合成的KFeO2的晶体结构、形貌、化学成分和价态进行了表征。用振动样品磁强计(VSM)对合成的KFeO2纳米粒子进行测量,以确定其磁性能。研究结果表明,采用简单的蛋清溶液法,在空气中分别在773、873和973 K焙烧2 h,可以合成铁酸钾(KFeO2)纳米颗粒。XRD和TEM研究结果分别表明,通过改变煅烧温度,结晶度和形态(包括粒度)发生了变化。值得注意的是,发现合成KFeO2粒径的减小对磁性能有显著影响。在室温下,873 K温度下合成的KFeO2纳米粒子表现出最高的饱和磁化强度(MS),为 2.07 × 104 A·m−1。此外,随着煅烧温度增加到 973 K,矫顽力(HC)从 3.51 增加到 16.89 kA·m−1。零场冷却(ZFC)结果表明,773 和 873 K下合成的KFeO2纳米颗粒的阻塞温度(TB)分别为 125 和 85 K。蛋清溶液法可以有效制备KFeO2纳米颗粒,且该方法简单、经济、环保。
Nanoparticles of potassium ferrite (KFeO2) in this work were synthesized by a simple egg white solution method upon calcination in air at 773, 873, and 973 K for 2 h. The effects of calcination temperature on the structural and magnetic properties of the synthesized KFeO2 nanoparticles were investigated. By varying the calcination temperature, X-ray diffraction and transmission electron microscopy results indicated the changes in crystallinity and morphology including particle size, respectively. Notably, the reduction in particle size of the synthesized KFeO2 was found to have a remarkable influence on the magnetic properties. At room temperature, the synthesized KFeO2 nanoparticles prepared at 873 K exhibited the highest saturation magnetization (MS) of 2.07 × 104 A·m−1. In addition, the coercivity (HC) increased from 3.51 to 16.89 kA·m−1 as the calcination temperature increased to 973 K. The zero-field cooled (ZFC) results showed that the blocking temperatures (TB) of about 125 and 85 K were observed in the samples calcined at 773 and 873 K, respectively. Therefore, this work showed that the egg white solution method is simple, cost effective, and environmentally friendly for the preparation of KFeO2 nanoparticles.
[1] |
H. Shokrollahi, A review of the magnetic properties, synthesis methods and applications of maghemite, J. Magn. Magn. Mater., 426(2017), p. 74. doi: 10.1016/j.jmmm.2016.11.033
|
[2] |
S. Bharadwaj, A. Tirupathi, N. Pavan Kumar, S. Pola, and Y. Kalyana Lakshmi, Study of magnetic and magnetoresistance behaviour of La0.67Sr0.33MnO3–CoFe2O4 composites, J. Magn. Magn. Mater., 513(2020), art. No. 167058. doi: 10.1016/j.jmmm.2020.167058
|
[3] |
S. Munjal, N. Khare, B. Sivakumar, and D. Nair Sakthikumar, Citric acid coated CoFe2O4 nanoparticles transformed through rapid mechanochemical ligand exchange for efficient magnetic hyperthermia applications, J. Magn. Magn. Mater., 477(2019), p. 388. doi: 10.1016/j.jmmm.2018.09.007
|
[4] |
S. Talukdar, P. Saha, I. Chakraborty, and K. Mandal, Surface functionalized CoFe2O4 nano-hollowspheres: Novel properties, J. Magn. Magn. Mater., 513(2020), art. No. 167079. doi: 10.1016/j.jmmm.2020.167079
|
[5] |
P. Abasian, M. Radmansouri, M. Habibi Jouybari, M.V. Ghasemi, A. Mohammadi, M. Irani, and F.S. Jazi, Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro, Int. J. Biol. Macromol., 121(2019), p. 398.
|
[6] |
F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, and M. Shahedi Asl, Magnetic CoFe2O4 nanoparticles doped with metal ions: A review, Ceram. Int., 46(2020), No. 11, p. 18391. doi: 10.1016/j.ceramint.2020.04.202
|
[7] |
A. Abuchenari and M. Moradi, Effect of Cu-substitution on the microstructure and magnetic properties of Fe–15%Ni alloy prepared by mechanical alloying, J. Compos. Compd., 1(2019), No. 1, p. 13.
|
[8] |
A.R. Rouhani, A.H. Esmaeil-Khanian, F. Davar, and S. Hasani, The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol–gel autocombustion method, Int. J. Appl. Ceram. Technol., 15(2018), No. 3, p. 758. doi: 10.1111/ijac.12832
|
[9] |
M. Kim, B.H. Kim, H.C. Choi, and B.I. Min, Origin of high Néel temperature in the low coordination number system AFeO2(A=K and Rb), Phys. Rev. B, 81(2010), No. 21, art. No. 212405. doi: 10.1103/PhysRevB.81.212405
|
[10] |
K. Edström, S. Ito, and R.G. Delaplane, The crystal and magnetic structure of nonstoichiometric K+ β-ferrite, J. Magn. Magn. Mater., 212(2000), No. 3, p. 347. doi: 10.1016/S0304-8853(99)00831-8
|
[11] |
M. Tabuchi, Preparation of AFeO2 (A = Li, Na) by hydrothermal method, Solid State Ionics, 79(1995), p. 220. doi: 10.1016/0167-2738(95)00065-E
|
[12] |
A. Kotarba, A. Barański, S. Hodorowicz, J. Sokołowski, A. Szytuła, and L. Holmlid, Stability and excitation of potassium promoter in iron catalysts – The role of KFeO2 and KAlO2 phases, Catal. Lett., 67(2000), No. 2-4, p. 129. doi: 10.1023/A:1019013504729
|
[13] |
S.C. Han, W.B. Park, K.S. Sohn, and M. Pyo, KFeO2 with corner-shared FeO4 frameworks as a new type of cathode material in potassium-ion batteries, J. Solid State Electrochem., 23(2019), No. 11, p. 3135. doi: 10.1007/s10008-019-04407-1
|
[14] |
A.K. Tangra, S. Singh, N.X. Sun, and G.S. Lotey, Investigation of structural, Raman and photoluminescence properties of novel material: KFeO2 nanoparticles, J. Alloys Compd., 778(2019), p. 47. doi: 10.1016/j.jallcom.2018.11.059
|
[15] |
L. Khanna and N.K. Verma, Synthesis, characterization and biocompatibility of potassium ferrite nanoparticles, J. Mater. Sci. Technol., 30(2014), No. 1, p. 30. doi: 10.1016/j.jmst.2013.10.008
|
[16] |
V.K. Garg, V.K. Sharma, and E. Kuzmann, Purification of water by ferrites - Mini review, [in] V.K. Sharma, R.A. Doong, H. Kim, R.S. Varma, and D.D. Dionysiou eds., Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, American Chemical Society, Washington, DC, 2016, p. 137.
|
[17] |
L. Khanna and N. Kumar Verma, Study on novel, superparamagnetic and biocompatible PEG/KFeO2 nanocomposite, J. Appl. Biomed., 13(2015), No. 1, p. 23. doi: 10.1016/j.jab.2014.05.003
|
[18] |
L. Khanna and N.K. Verma, Silica/potassium ferrite nanocomposite: Structural, morphological, magnetic, thermal and in vitro cytotoxicity analysis, Mater. Sci. Eng. B, 178(2013), No. 18, p. 1230. doi: 10.1016/j.mseb.2013.08.004
|
[19] |
B.S. Randhawa, H.S. Dosanjh, and N. Kumar, Synthesis of potassium ferrite by precursor and combustion methods, J. Therm. Anal. Calorim., 95(2009), No. 1, p. 75. doi: 10.1007/s10973-008-8920-7
|
[20] |
A. Kotarba, W. Bieniasz, P. Kuśtrowski, K. Stadnicka, and Z. Sojka, Composite ferrite catalyst for ethylbenzene dehydrogenation: Enhancement of potassium stability and catalytic performance by phase selective doping, Appl. Catal. A, 407(2011), No. 1-2, p. 100. doi: 10.1016/j.apcata.2011.08.029
|
[21] |
S.J. Moon, I.B. Shim, and C.S. Kim, Crystallographic and magnetic properties of KFeO2, IEEE Trans. Magn., 42(2006), No. 10, p. 2879. doi: 10.1109/TMAG.2006.880275
|
[22] |
C. Masingboon, S. Maensiri, T. Yamwong, P.L. Anderson, and S. Seraphin, Nanocrystalline CaCu3Ti4O12 powders prepared by egg white solution route: Synthesis, characterization and its giant dielectric properties, Appl. Phys. A, 91(2008), No. 1, p. 87. doi: 10.1007/s00339-007-4363-4
|
[23] |
B.L. Cushing, V.L. Kolesnichenko, and C.J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev., 104(2004), No. 9, p. 3893. doi: 10.1021/cr030027b
|
[24] |
S. Bagheri, K. Shameli, and S.B. Abd Hamid, Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol–gel method, J. Chem., 2013(2013), art. No. 848205. doi: 10.1155/2013/848205
|
[25] |
M.A. Lambrecht, L.J. Deleu, I. Rombouts, and J.A. Delcour, Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes, Food Hydrocolloids, 79(2018), p. 352. doi: 10.1016/j.foodhyd.2017.12.032
|
[26] |
I. van der Plancken, A. van Loey, and M.E.G. Hendrickx, Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment, J. Agric. Food Chem., 53(2005), No. 14, p. 5726. doi: 10.1021/jf050289+
|
[27] |
S. Renzetti, I.A.F. van den Hoek, and R.G.M. van der Sman, Amino acids, polyols and soluble fibres as sugar replacers in bakery applications: Egg white proteins denaturation controlled by hydrogen bond density of solutions, Food Hydrocolloids, 108(2020), art. No. 106034. doi: 10.1016/j.foodhyd.2020.106034
|
[28] |
N. Hagolle, P. Relkin, Y. Popineau, and D. Bertrand, Study of the stability of egg white protein-based foams: Effect of heating protein solution, J. Sci. Food Agric., 80(2000), No. 8, p. 1245. doi: 10.1002/1097-0010(200006)80:8<1245::AID-JSFA631>3.0.CO;2-4
|
[29] |
S. Dhara, Synthesis of nanocrystalline alumina using egg white, J. Am. Ceram. Soc., 88(2005), No. 7, p. 2003. doi: 10.1111/j.1551-2916.2005.00382.x
|
[30] |
K. Thiyagarajan, V.K. Bharti, S. Tyagi, P.K. Tyagi, A. Ahuja, K. Kumar, T. Raj, and B. Kumar, Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application, RSC Adv., 8(2018), No. 41, p. 23213. doi: 10.1039/C8RA03649G
|
[31] |
V. Petříček, M. Dušek, and L. Palatinus, Crystallographic computing system JANA2006: General features, Z. Kristallogr. - Cryst. Mater., 229(2014), No. 5, p. 345. doi: 10.1515/zkri-2014-1737
|
[32] |
N.V. Proskurnina, V.I. Voronin, G.S. Shekhtman, L.N. Maskaeva, N.A. Kabanova, A.A. Kabanov, and V.A. Blatov, Ionic conductivity in Ti-doped KFeO2: Experiment and mathematical modeling, J. Phys. Chem. C, 121(2017), No. 39, p. 21128. doi: 10.1021/acs.jpcc.7b05164
|
[33] |
P. Muhammed Shafi and A. Chandra Bose, Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals, AIP Adv., 5(2015), No. 5, art. No. 057137. doi: 10.1063/1.4921452
|
[34] |
E.S. Freeman, The kinetics of the thermal decomposition of potassium nitrate and of the reaction between potassium nitrite and Oxygen, J. Am. Chem. Soc., 79(1957), No. 4, p. 838. doi: 10.1021/ja01561a015
|
[35] |
B.H. Toby, R factors in Rietveld analysis: How good is good enough?, Powder Diffr., 21(2006), No. 1, p. 67. doi: 10.1154/1.2179804
|
[36] |
X.Y. Li, C.F. Liu, C.K. Zhang, H.Y. Fu, X.H. Nan, W.D. Ma, Z.Y. Li, K. Wang, H.B. Wu, and G.Z. Cao, Effects of preinserted Na ions on Li-ion electrochemical intercalation properties of V2O5, ACS Appl. Mater. Interfaces, 8(2016), No. 37, p. 24629. doi: 10.1021/acsami.6b08052
|
[37] |
Z.J. Huang, Z.X. Wang, X.B. Zheng, H.J. Guo, X.H. Li, Q. Jing, and Z.H. Yang, Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2–xMgxO2 for lithium ion batteries, RSC Adv., 5(2015), No. 108, p. 88773. doi: 10.1039/C5RA16633K
|
[38] |
M.H. Pham, C.T. Dinh, G.T. Vuong, N.D. Ta, and T.O. Do, Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides, Phys. Chem. Chem. Phys., 16(2014), No. 13, p. 5937. doi: 10.1039/c3cp54629b
|
[39] |
T. Gholam, L.R. Zheng, J.O. Wang, H.J. Qian, R. Wu, and H.Q. Wang, Synchrotron X-ray absorption spectroscopy study of local structure in Al-doped BiFeO3 powders, Nanoscale Res. Lett., 14(2019), No. 1, art. No. 137. doi: 10.1186/s11671-019-2965-3
|
[40] |
G. Kataby, Y. Koltypin, J. Rothe, J. Hormes, I. Felner, X. Cao, and A. Gedanken, The adsorption of monolayer coatings on iron nanoparticles: Mössbauer spectroscopy and XANES results, Thin Solid Films, 333(1998), No. 1-2, p. 41. doi: 10.1016/S0040-6090(98)00802-5
|
[41] |
T.E. Westre, P. Kennepohl, J.G. DeWitt, B. Hedman, K.O. Hodgson, and E.I. Solomon, A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes, J. Am. Chem. Soc., 119(1997), No. 27, p. 6297. doi: 10.1021/ja964352a
|
[42] |
P.A. Bingham, O.M. Hannant, N. Reeves-Mclaren, M.C. Stennett, and R.J. Hand, Selective behaviour of dilute Fe3+ ions in silicate glasses: An Fe K-edge EXAFS and XANES study, J. Non Cryst. Solids, 387(2014), p. 47. doi: 10.1016/j.jnoncrysol.2013.12.034
|
[43] |
G. Mustafa, M.U. Islam, W.L. Zhang, Y. Jamil, M. Asif Iqbal, M. Hussain, and M. Ahmad, Temperature dependent structural and magnetic properties of Cerium substituted Co–Cr ferrite prepared by auto-combustion method, J. Magn. Magn. Mater., 378(2015), p. 409. doi: 10.1016/j.jmmm.2014.11.057
|
[44] |
B. Issa, I.M. Obaidat, B.A. Albiss, and Y. Haik, Magnetic nanoparticles: Surface effects and properties related to biomedicine applications, Int. J. Mol. Sci., 14(2013), No. 11, p. 21266. doi: 10.3390/ijms141121266
|
[45] |
Y.D. Li, R.M. Liu, Z.D. Zhang, and C.S. Xiong, Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M0.8O19 particles, Mater. Chem. Phys., 64(2000), No. 3, p. 256. doi: 10.1016/S0254-0584(99)00218-7
|
[46] |
T. Hyeon, Y. Chung, J. Park, S.S. Lee, Y.W. Kim, and B.H. Park, Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals, J. Phys. Chem. B, 106(2002), No. 27, p. 6831. doi: 10.1021/jp026042m
|
[47] |
R.D. Sánchez, J. Rivas, P. Vaqueiro, M.A. López-Quintela, and D. Caeiro, Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol–gel method, J. Magn. Magn. Mater., 247(2002), No. 1, p. 92. doi: 10.1016/S0304-8853(02)00170-1
|
[48] |
J.S. Lee, J.M. Cha, H.Y. Yoon, J.K. Lee, and Y.K. Kim, Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity, Sci. Rep., 5(2015), art. No. 12135. doi: 10.1038/srep12135
|