Cite this article as: |
Xingke Zhao and Xusheng Hai, Microstructure and tribological behavior of the nickel-coated-graphite-reinforced Babbitt metal composite fabricated via selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 320-326. https://doi.org/10.1007/s12613-020-2195-9 |
赵兴科 E-mail: xkzhao@ustb.edu.cn
为改善巴氏合金的性能,解决石墨增强相在巴氏合金中的均匀分布问题,采用选择性激光熔化方法制备了镍包石墨增强巴氏合金复合材料试样。采用扫描电子显微镜研究了复合材料的显微组织,采用剪切试验和干滑动磨损试验测试了复合材料的力学性能和摩擦学性能。结果表明,大部分镍包覆石墨)颗粒易于在激光焊道的边界处聚集,并形成微孔和微裂纹。随着镍包石墨含量的增加,复合材料的剪切强度和摩擦系数均降低,并且摩擦机制从塑性成形沟转变为脆性切削。6wt%镍包石墨复合材料的剪切强度和摩擦系数分别比单一巴氏合金低约20%和33%。通过选择具有较厚镍层的镍包石墨,并控制激光能量输入,有利于改善复合材料中镍包石墨的分散均匀性,从而制备出兼具低摩擦系数和足够强度的新型巴氏合金材料。
To improve the properties of Babbitt alloys, Ni-coated-graphite-reinforced Babbitt metal composite specimens were prepared via selective laser melting (SLM), and the composites microstructures, mechanical properties, and tribological properties were studied through scanning electron microscopy (SEM), shear testing, and dry-sliding wear testing, respectively. The results showed that most of the nickel-coated graphite (NCGr) particles were distributed at the boundaries of laser beads in the cross section of the SLM composite specimens. Microcracks and microvoids formed at the boundaries of laser beads where NCGr particles accumulated. Both the shear strength and the friction coefficient of the SLM composite specimens decreased with increasing NCGr content. The shear strength and the friction coefficient of the SLM composite sample with 6wt% NCGr were approximately 20% and 33% lower than those of the NCGr-free sample, respectively. The friction mechanism changed from plastic shaping furrow to brittle cutting with increasing NCGr content. A practical Babbitt material with a lower friction coefficient and sufficient strength can be obtained by controlling the NCGr particle dispersion; this can be achieved by choosing NCGr particles with a thicker Ni layer and precisely controlling the laser energy input during the SLM process.
[1] |
J.H. Westbrook, Intermetallic compounds: Their past and promise, Metall. Trans. A, 8(1977), No. 9, p. 1327. doi: 10.1007/BF02642848
|
[2] |
Y. Tasgın, Effect of MgO, Al2O3 and FeCr2O4 on microstructure and wear resistance of Babbitt metal (Sn–Sb–Cu), Mater. Res. Express, 6(2019), No. 4, art. No. 046548. doi: 10.1088/2053-1591/aaf7b4
|
[3] |
Y.Y. He, Z.K. Zhao, T.Y. Luo, X.C. Lu, and J.B. Luo, Failure analysis of journal bearing used in turboset of a power plant, Mater. Des., 52(2013), p. 923. doi: 10.1016/j.matdes.2013.06.027
|
[4] |
M.M. Goudarzi, S.A.J. Jahromi, and A. Nazarboland, Investigation of characteristics of tin-based white metals as a bearing material, Mater. Des., 30(2009), No. 6, p. 2283. doi: 10.1016/j.matdes.2008.07.056
|
[5] |
R.L. Chen, Y.Y. Wei, Q. Jia, J.M. Xu, F. Zhang, and X.Y. Yuan, Effect of increasing Cu content on the mechanical properties of tin-based Babbitt, Rare Met. Mater. Eng., 47(2018), No. 6, p. 1854.
|
[6] |
Q. Dong, Z.W. Yin, H.L. Li, X.Y. Zhang, D. Jiang, and N. Zhong, Effects of Ag micro-addition on structure and mechanical properties of Sn–11Sb–6Cu Babbitt, Mater. Sci. Eng. A, 722(2018), p. 225. doi: 10.1016/j.msea.2018.03.034
|
[7] |
M. Kamal, A. El-Bediwi, A.R. Lashin, and A.H. El-Zarka, Copper effects in mechanical properties of rapidly solidified Sn–Pb–Sb Babbitt bearing alloys, Mater. Sci. Eng. A, 530(2011), p. 327. doi: 10.1016/j.msea.2011.09.092
|
[8] |
M.V.S. Babu, A.R. Krishna, and K.N.S. Suman, Improvement of tensile behaviour of tin Babbitt by reinforcing with nano ilmenite and its optimisation by using response surface methodology, Int. J. Manuf. Mater. Mech. Eng., 7(2017), No. 1, p. 37. doi: 10.4018/IJMMME.2017010103
|
[9] |
N.V. Kobernik, R.S. Mikheev, I.E. Kalashnikov, L.I. Kobeleva, and L.K. Bolotova, Tribological properties of Babbitt alloy coatings modified with carbon nanotubes, Inorg. Mater. Appl. Res., 8(2017), No. 3, p. 428. doi: 10.1134/S2075113317030145
|
[10] |
N.P. Aleshin, N.V. Kobernik, R.S. Mikheev, V.E. Vaganov, V.V. Reshetnyak, and A.V. Aborkin, Plasma-powder application of antifrictional Babbitt coatings modified by carbon nanotubes, Russ. Eng. Res., 36(2016), No. 1, p. 46. doi: 10.3103/S1068798X16010032
|
[11] |
I.E. Kalashnikov, N.B. Podymova, A.A. Karabutov, L.K. Bolotova, L.I. Kobeleva, and A.G. Kolmakov, Local elastic moduli of particle-filled B83 Babbitt-based composite materials prepared by powder metallurgy techniques, Inorg. Mater., 52(2016), No. 4, p. 429. doi: 10.1134/S0020168516040063
|
[12] |
I.E. Kalashnikov, L.K. Bolotova, I.V. Katin, L.I. Kobeleva, A.G. Kolmakov, R.S. Mikheev, and N.V. Kobernik, Production of antifriction composite filler rods based on Babbit B83 by extrusion, Inorg. Mater. Appl. Res., 8(2017), No. 2, p. 335. doi: 10.1134/S207511331702006X
|
[13] |
C.M. Lin, Y.C. Chiou, and R.T. Lee, Effect of MoS2 additive on electrical pitting mechanism of lubricated surface for Babbitt alloy/bearing steel pair under ac electric field, Wear, 257(2004), No. 7-8, p. 833. doi: 10.1016/j.wear.2004.05.002
|
[14] |
J. Sugishita, S. Fujiyoshi, T. Imura, and M. Ishii, A study of cast alloys with partially dispersed graphite: I: The process of partial dispersion with uncoated carbon microballoons, Wear, 81(1982), No. 2, p. 209. doi: 10.1016/0043-1648(82)90271-X
|
[15] |
Venkatesh R. and V.S. Rao, Thermal, corrosion and wear analysis of copper based metal matrix composites reinforced with alumina and graphite, Defence Technol., 14(2018), No. 4, p. 346. doi: 10.1016/j.dt.2018.05.003
|
[16] |
W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform., 23(2014), No. 6, p. 1917. doi: 10.1007/s11665-014-0958-z
|
[17] |
I. Yadroitsev, Ph. Bertrand, and I. Smurov, Parametric analysis of the selective laser melting process, Appl. Surf. Sci., 253(2007), No. 19, p. 8064. doi: 10.1016/j.apsusc.2007.02.088
|
[18] |
B. Diepold, N. Vorlaufer, S. Neumeier, T. Gartner, and M. Göken, Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 640. doi: 10.1007/s12613-020-1991-6
|
[19] |
B. AlMangour, D. Grzesiak, and J.M. Yang, Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting, J. Alloys Compd., 680(2016), p. 480. doi: 10.1016/j.jallcom.2016.04.156
|
[20] |
B. AlMangour, D. Grzesiak, and J.M. Yang, Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content, Mater. Des., 104(2016), p. 141. doi: 10.1016/j.matdes.2016.05.018
|
[21] |
B. AlMangour, D. Grzesiak, and J.M. Yang, Selective laser melting of TiB2/H13 steel nanocomposites: Influence of hot isostatic pressing post-treatment, J. Mater. Process. Technol., 244(2017), p. 344. doi: 10.1016/j.jmatprotec.2017.01.019
|
[22] |
B. AlMangour, D. Grzesiak, and J.M. Yang, Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting, Mater. Des., 96(2016), p. 150. doi: 10.1016/j.matdes.2016.02.022
|
[23] |
Q.Q. Han, Y.Q. Geng, R. Setchi, F. Lacan, D.D. Gu, and S.L. Evans, Macro and nanoscale wear behaviour of Al–Al2O3 nanocomposites fabricated by selective laser melting, Composites Part B, 127(2017), p. 26. doi: 10.1016/j.compositesb.2017.06.026
|
[24] |
C.Y. Yap, C.K. Chua, and Z.L. Dong, An effective analytical model of selective laser melting, Virtual Phys. Prototyping, 11(2016), No. 1, p. 21. doi: 10.1080/17452759.2015.1133217
|
[25] |
S. Mushtaq and M.F. Wani, High-temperature friction and wear studies of Fe–Cu–Sn alloy with graphite as solid lubricant under dry sliding conditions, Mater. Res. Express, 5(2018), No. 2, art. No. 026504. doi: 10.1088/2053-1591/aaa9a5
|