留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 11
Nov.  2021

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1870
  • HTML全文浏览量:  400
  • PDF下载量:  27
  • 被引次数: 0
Shan-xia Xiong, Jian-lei Kuang, Qian-fang Zheng, Ting Xiao, Wen-xiu Liu, Qi Wang, Peng Jiang,  and Wen-bin Cao, Effects of Si/Al, Na/Al and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1868-1874. https://doi.org/10.1007/s12613-020-2197-7
Cite this article as:
Shan-xia Xiong, Jian-lei Kuang, Qian-fang Zheng, Ting Xiao, Wen-xiu Liu, Qi Wang, Peng Jiang,  and Wen-bin Cao, Effects of Si/Al, Na/Al and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1868-1874. https://doi.org/10.1007/s12613-020-2197-7
引用本文 PDF XML SpringerLink
研究论文

Si/Al、Na/Al和H2O/Na2O摩尔比对无机铝硅酸盐涂层甲醛阻隔性能的影响

  • Research Article

    Effects of Si/Al, Na/Al and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings

    + Author Affiliations
    • Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health. In this study, inorganic aluminosilicate coatings prepared by combining metakaolin, silica fume, NaOH, and H2O were applied to the surfaces of wood-based panels to obstruct formaldehyde release. The Si/Al, Na/Al, and H2O/Na2O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings. Results showed that the cracks in the coatings gradually disappeared and the formaldehyde resistance rates of the barrier increased as the Si/Al molar ratio was increased from 1.6 to 2.2. This value also increased as the Na/Al molar ratio was increased from 0.9 to 1.2 because of the improvement of the degree of polymerization. As the H2O/Na2O molar ratio was increased from 12 to 15, the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde resistance rate. When the Si/Al, Na/Al, and H2O/Na2O molar ratios were 2.2, 1.2, and 12, respectively, the inorganic aluminosilicate coating showed good performance as a formaldehyde-resistant barrier and its formaldehyde resistance rate could reach up to 83.2%.

    • loading
    • [1]
      X.J. Tang, Y. Bai, A. Duong, M.T. Smith, L.Y. Li, and L.P. Zhang, Formaldehyde in China: Production, consumption, exposure levels, and health effects, Environ. Int., 35(2009), No. 8, p. 1210. doi: 10.1016/j.envint.2009.06.002
      [2]
      M.G. Jakab, T. Klupp, K. Besenyei, A. Biró, J. Major, and A. Tompa, Formaldehyde-induced chromosomal aberrations and apoptosis in peripheral blood lymphocytes of personnel working in pathology departments, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 698(2010), No. 1-2, p. 11. doi: 10.1016/j.mrgentox.2010.02.015
      [3]
      F.W. Sousa, I.B. Caracas, R.F. Nascimento, and R.M. Cavalcante, Cavalcante, Exposure and cancer risk assessment for formaldehyde and acetaldehyde in the hospitals, Fortaleza-Brazil, Build. Environ., 46(2011), No. 11, p. 2115. doi: 10.1016/j.buildenv.2011.04.006
      [4]
      Y. Gu, L. Cheng, Z.B. Gu, Y. Hong, Z.F. Li, and C.M. Li, Preparation, characterization and properties of starch-based adhesive for wood-based panels, Int. J. Biol. Macromol., 134(2019), p. 247. doi: 10.1016/j.ijbiomac.2019.04.088
      [5]
      X. Hao and D.B. Fan, Preparation and characterization of epoxy-crosslinked soy protein adhesive, J. Adhes. Sci. Technol., 32(2018), No. 24, p. 2682. doi: 10.1080/01694243.2018.1517488
      [6]
      M. Hazwan Hussin, A.A. Aziz, A. Iqbal, M.N.M. Ibrahim, and N.H.A. Latif, Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal, Int. J. Biol. Macromol., 122(2019), p. 713. doi: 10.1016/j.ijbiomac.2018.11.009
      [7]
      F. Dodangeh, M.S. Seyed Dorraji, M.H. Rasoulifard, and H.R. Ashjari, Synthesis and characterization of alkoxy silane modified polyurethane wood adhesive based on epoxidized soybean oil polyester polyol, Composites Part B, 187(2020), art. No. 107857. doi: 10.1016/j.compositesb.2020.107857
      [8]
      A. Ghani, Z. Ashaari, P. Bawon, and S.H. Lee, Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger, Build. Environ., 142(2018), p. 188. doi: 10.1016/j.buildenv.2018.06.020
      [9]
      P.H.G. De Cademartori, M.A. Artner, R. Alves de Freitas, and W.L.E. Magalhães, Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in situ cure performance, Composites Part B, 176(2019), art. No. 107281. doi: 10.1016/j.compositesb.2019.107281
      [10]
      M. Khonakdar Dazmiri, M. Valizadeh Kiamahalleh, A. Dorieh, and A. Pizzi, Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its influence on the performance of medium density fiberboard bonded with them, Int. J. Adhes. Adhes., 95(2019), art. No. 102440. doi: 10.1016/j.ijadhadh.2019.102440
      [11]
      K.W. Kim, S. Kim, H.J. Kim, and J.C. Park, Formaldehyde and TVOC emission behaviors according to finishing treatment with surface materials using 20 L chamber and FLEC, J. Hazard. Mater., 177(2010), No. 1-3, p. 90. doi: 10.1016/j.jhazmat.2009.09.060
      [12]
      Y. Liu and X.D. Zhu, Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper, Constr. Build. Mater., 66(2014), p. 132. doi: 10.1016/j.conbuildmat.2014.05.088
      [13]
      X.D. Zhu, Y. Liu, and J. Shen, Volatile organic compounds (VOCs) emissions of wood-based panels coated with nanoparticles modified water based varnish, Eur. J. Wood Wood Prod., 74(2016), No. 4, p. 601. doi: 10.1007/s00107-016-1012-7
      [14]
      S. Kim, Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing, J. Hazard. Mater., 176(2010), No. 1-3, p. 14. doi: 10.1016/j.jhazmat.2009.03.113
      [15]
      J.M. Herrera-Alonso, E. Marand, J. Little, and S.S. Cox, Polymer/clay nanocomposites as VOC barrier materials and coatings, Polymer, 50(2009), No. 24, p. 5744. doi: 10.1016/j.polymer.2009.09.054
      [16]
      J.A. Kim, S. Kim, H.J. Kim, and J. Seo, Measurements of formaldehyde and TVOC emission from paints and coating materials using small chamber method for building composites, J. Wuhan Univ. Technol. Mater. Sci. Ed., 27(2012), No. 1, p. 120. doi: 10.1007/s11595-012-0420-8
      [17]
      Z.H. Zhang, X. Yao, and H.J. Zhu, Potential application of geopolymers as protection coatings for marine concrete: II. Microstructure and anticorrosion mechanism, Appl. Clay Sci., 49(2010), No. 1-2, p. 7. doi: 10.1016/j.clay.2010.04.024
      [18]
      Z.H. Zhang, X. Yao, and H.J. Zhu, Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties, Appl. Clay Sci., 49(2010), No. 1-2, p. 1. doi: 10.1016/j.clay.2010.01.014
      [19]
      Y.C. Wang and J.P. Zhao, Facile preparation of slag or fly ash geopolymer composite coatings with flame resistance, Constr. Build. Mater., 203(2019), p. 655. doi: 10.1016/j.conbuildmat.2019.01.097
      [20]
      A. Nmiri, M. Duc, N. Hamdi, O. Yazoghli-Marzouk, and E. Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 555. doi: 10.1007/s12613-019-1764-2
      [21]
      Z. Liu, N.N. Shao, T.Y. Huang, J.F. Qin, D.M. Wang, and Y. Yang, Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash, Int. J. Miner. Metall. Mater., 21(2014), No. 6, p. 620. doi: 10.1007/s12613-014-0950-5
      [22]
      C. Ridtirud, P. Chindaprasirt, and K. Pimraksa, Factors affecting the shrinkage of fly ash geopolymers, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 100. doi: 10.1007/s12613-011-0407-z
      [23]
      M. Lahoti, P. Narang, K.H. Tan, and E.H. Yang, Mix design factors and strength prediction of metakaolin-based geopolymer, Ceram. Int., 43(2017), No. 14, p. 11433. doi: 10.1016/j.ceramint.2017.06.006
      [24]
      Y.S. Zhang, W. Sun, and Z.J. Li, Composition design and microstructural characterization of calcined Kaolin-based geopolymer cement, Appl. Clay Sci., 47(2010), No. 3-4, p. 271. doi: 10.1016/j.clay.2009.11.002
      [25]
      G.M. Nasab, F. Golestanifard, and K.J.D. Mackenzie, The effect of the SiO2/Na2O ratio in the structural modification of metakaolin-based geopolymers studied by XRD, FTIR and MAS-NMR, J. Ceram. Sci. Technol., 5(2014), No. 3, p. 185.
      [26]
      J.W. Phair and J.S.J. van Deventer, Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers, Int. J. Miner. Process., 66(2002), No. 1-4, p. 121. doi: 10.1016/S0301-7516(02)00013-3
      [27]
      T. Uchino, T. Sakka, K. Hotta, and M. Iwasaki, Attenuated toatal reflectance Fourier-transform infrared spectra of a hydrated sodium soilicate glass, J. Am. Ceram. Soc., 72(1989), No. 11, p. 2173. doi: 10.1111/j.1151-2916.1989.tb06051.x
      [28]
      Q. Wan, F. Rao, S.X. Song, R.E. García, R.M. Estrella, C.L. Patiño, and Y.M. Zhang, Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios, Cem. Concr. Compos., 79(2017), p. 45. doi: 10.1016/j.cemconcomp.2017.01.014

    Catalog


    • /

      返回文章
      返回