留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(8)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1974
  • HTML全文浏览量:  567
  • PDF下载量:  74
  • 被引次数: 0
Qianbing You, Ji Xiong, Tianen Yang, Tao Hua, Yunliang Huo, and Junbo Liu, Effect of cermet substrate characteristics on the microstructure and properties of TiAlN coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 547-556. https://doi.org/10.1007/s12613-020-2198-6
Cite this article as:
Qianbing You, Ji Xiong, Tianen Yang, Tao Hua, Yunliang Huo, and Junbo Liu, Effect of cermet substrate characteristics on the microstructure and properties of TiAlN coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 547-556. https://doi.org/10.1007/s12613-020-2198-6
引用本文 PDF XML SpringerLink
研究论文

金属陶瓷基体特性对TiAlN涂层微观结构和性能的影响

  • 通讯作者:

    熊计

文章亮点

  • (1) 研究了金属基体微观结构对涂层的微观结构与机械性能的影响。
  • (2) 研究了不同切削参数下涂层/未涂层金属陶瓷刀片对轴承钢的后刀面磨损。
  • (3) 系统的评估了涂层金属陶瓷的动态与静态性能。
  • Ti(C,N)基金属陶瓷是以 TiC、TiN、Ti(C,N)等为基,Ni/Co为粘结剂,并添加 WC、Mo2C、TaC、VC 等碳化物改善其组织性能,采用粉末冶金方法制备的多相固体材料,具有高红硬性、高耐磨性、低摩擦系数和低热导率,高的化学稳定性等优点。Ti(C,N)基金属陶瓷刀具对高速加工中软钢有很大的优越性:被加工工件表面尺寸精度和光洁度高,可实现以车代磨。在切削加工中,刀具的性能对加工表面质量和加工效率有着重大的影响。涂层具有高的耐磨性、耐热性、高的化学稳定性等优点,可使切削刀具的使用寿命大幅度提高。当前80%–90%以上的切削刀具都会涂层,而这些涂层工艺主要是针对硬质合金而设计的。金属陶瓷被视为硬质合金未来最有潜力的替代品。要实现Ti(C,N)基金属陶瓷对硬质合金的替代,Ti(C,N)基金属陶瓷的可涂层性、涂层过程中的生长机理以及金属陶瓷基体与涂层的匹配性需要系统的研究。涂层与基体材料两者总是相互影响,基体的化学成分与结构会直接影响涂层的形核生长,而涂层的结合强度与硬度等性能直接决定了涂层能否被运用。鉴于此,本文制备了不同WC含量的TiAlN涂层金属陶瓷,并采用微观组织观察、结合强度与纳米压痕检测和切削加工试验研究了不同WC含量的金属陶瓷基体对TiAlN涂层的微观结构与性能的影响。结果表明沉积在不同基体上的TiAlN涂层具有柱状晶粒结构。且随着WC的增加,TiAlN的强度比I(111)/I(200)和附着力逐渐增大。当基体中没有WC时,TiAlN涂层的择优取向为(200)晶面。 随着WC的加入,TiAlN涂层的择优取向变为(111)和(200)晶面。涂层与基体的结合强度最大的区别在于基体的微观结构和成分。含15wt% WC的金属陶瓷基体涂层的H/EH3/E2最高,耐磨性最好。

  • Research Article

    Effect of cermet substrate characteristics on the microstructure and properties of TiAlN coatings

    + Author Affiliations
    • The composition and structure of substrate materials have important influences on coating performance, especially in terms of bonding strength and coating hardness, which determine whether the coating can be used for a given application. In this study, a TiAlN coating is deposited on Ti(C,N)-based cermet (TC) substrates with 0wt%–20wt% WC by arc ion plating. The influence of cermet substrate characteristics on the structure and properties of the TiAlN coating is then researched. Results show that the TiAlN coating deposited on the TC substrate has a columnar grain structure. As WC increases, the strength ratio of I(111)/I(200) and adhesive strength of TiAlN gradually increases. In the absence of WC in the substrate, the preferred orientation of the TiAlN coating is (200). As WC increases, the preferred orientation of the TiAlN coating becomes (111) and (200). Notable differences in adhesive strength between the coating and substrate could be attributed to the microstructure and composition of the latter. Scratching results show that the adhesive strengths of the TiAlN coating on the 0wt%–20wt% WC cermet substrate are 52–65 N. Among the coatings obtained that on the TC substrate with 15wt% WC presents the highest H/E and H3/E2, which indicates that this coating also features the best wear resistance. The failure mechanisms of the coated tools include coating peeling, adhesive wear, and abrasive wear. As the cutting speed increases, the degree of flank wear increases and the durability of the coating decreases accordingly. Increases in WC result in an initial decrease followed by a gradual increase in the flank wear of the coated cermet inserts.

    • loading
    • [1]
      A. Rajabi, M.J. Ghazali, and A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet — A review, Mater. Des., 67(2015), p. 95. doi: 10.1016/j.matdes.2014.10.081
      [2]
      M.X. Liang, W.C. Wan, Z.X. Guo, J. Xiong, G.B. Dong, X.M. Zheng, Y. Chen, and P. Liu, Erosion-corrosion behavior of Ti(C,N)-based cermets with different TiN contents, Int. J. Refract. Met. Hard Mater., 43(2014), p. 322. doi: 10.1016/j.ijrmhm.2013.10.006
      [3]
      I. Hussainova, Effect of microstructure on the erosive wear of titanium carbide-based cermets, Wear, 255(2003), No. 1-6, p. 121. doi: 10.1016/S0043-1648(03)00198-4
      [4]
      C.H. Yi, H.Y. Fan, J. Xiong, Z.X. Guo, G.B. Dong, W.C. Wan, and H.S. Chen, Effect of WC content on the microstructures and corrosion behavior of Ti(C,N)-based cermets, Ceram. Int., 39(2013), No. 1, p. 503. doi: 10.1016/j.ceramint.2012.06.055
      [5]
      D. Mari, S. Bolognini, T. Viatte, and W. Benoit, Study of the mechanical properties of TiCN–WC–CO hardmetals by the interpretation of internal friction spectra, Int. J. Refract. Met. Hard Mater., 19(2001), No. 4-6, p. 257. doi: 10.1016/S0263-4368(01)00037-3
      [6]
      W.T. Kwon, J.S. Park, S.W. Kim, and S. Kang, Effect of WC and group IV carbides on the cutting performance of Ti(C,N) cermet tools, Int. J. Mach. Tools Manuf., 44(2004), No. 4, p. 341. doi: 10.1016/j.ijmachtools.2003.10.023
      [7]
      T.J. Li, J. Xiong, Z.X. Guo, T.E. Yang, M. Yang, and H. Du, Structures and properties of TiAlCrN coatings deposited on Ti(C,N)-based cermets with various WC contents, Int. J. Refract. Met. Hard Mater., 69(2017), p. 247. doi: 10.1016/j.ijrmhm.2017.08.020
      [8]
      P. Ettmayer, H. Kolaska, W. Lengauer, and K. Dreyer, Ti(C,N) cermets—Metallurgy and properties, Int. J. Refract. Met. Hard Mater., 13(1995), No. 6, p. 343. doi: 10.1016/0263-4368(95)00027-G
      [9]
      J. Wang, Y. Liu, P. Zhang, J.C. Peng, J.W. Ye, and M.J. Tu, Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)–xWC–Mo2C–(Co, Ni) system, Int. J. Refract. Met. Hard Mater., 27(2009), No. 1, p. 9. doi: 10.1016/j.ijrmhm.2008.01.010
      [10]
      J. Qu, W.H. Xiong, D.M. Ye, Z.H. Yao, W.J. Liu, and S.J. Lin, Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)–WC–Mo–Ni cermets, Int. J. Refract. Met. Hard Mater., 28(2010), No. 2, p. 243. doi: 10.1016/j.ijrmhm.2009.10.005
      [11]
      T.S. Kumar, S.B. Prabu, G. Manivasagam, and K.A. Padmanabhan, Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 796. doi: 10.1007/s12613-014-0973-y
      [12]
      S.L. Zhao, J. Zhang, Z. Zhang, S.H. Wang, and Z.G. Zhang, Microstructure and mechanical properties of (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N films on cemented carbide substrates, Int. J. Miner. Metall. Mater., 21(2014), No. 1, p. 77. doi: 10.1007/s12613-014-0868-y
      [13]
      A. Kulkarni, V. Sargade, and C. More, Machinability investigation of AISI 304 austenitic stainless steels using multilayer AlTiN/TiAlN coated carbide inserts, Procedia Manuf., 20(2018), p. 548. doi: 10.1016/j.promfg.2018.02.082
      [14]
      V. Bonu, M. Jeevitha, V. Praveen Kumar, G. Srinivas, Siju, and H.C. Barshilia, Solid particle erosion and corrosion resistance performance of nanolayered multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V substrates, Surf. Coat. Technol., 387(2020), art. No. 125531. doi: 10.1016/j.surfcoat.2020.125531
      [15]
      F.Y. Cao, P. Munroe, Z.F. Zhou, and Z.H. Xie, Mechanically robust TiAlSiN coatings prepared by pulsed-DC magnetron sputtering system: Scratch response and tribological performance, Thin Solid Films, 645(2018), p. 222. doi: 10.1016/j.tsf.2017.10.058
      [16]
      W. Liu, Q.Q. Chu, R.X. He, M.P. Huang, H.D. Wu, Q.G. Jiang, J. Chen, X. Deng, and S.H. Wu, Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools, Ceram. Int., 44(2018), No. 2, p. 2209. doi: 10.1016/j.ceramint.2017.10.177
      [17]
      G. Xian, J. Xiong, H.B. Zhao, H.Y. Fan, Z.X. Li, and H. Du, Evaluation of the structure and properties of the hard TiAlN–(TiAlN/CrAlSiN)–TiAlN multiple coatings deposited on different substrate materials, Int. J. Refract. Met. Hard Mater., 85(2019), art. No. 105056. doi: 10.1016/j.ijrmhm.2019.105056
      [18]
      L. Ni, T. Yang, J. Xiong, and Y.H. Fei, Structure and mechanical properties of TiAlCrSiN coatings deposited on Ti(C,N)–NbC–Ni cermets with varied Mo2C contents, Int. J. Refract. Met. Hard Mater., 86(2020), art. No. 105083. doi: 10.1016/j.ijrmhm.2019.105083
      [19]
      B.B. Chai, J. Xiong, Z.X. Guo, J.B. Liu, L. Ni, Y. Xiao, and C. Chen, Structure and high temperature wear characteristics of CVD coating on HEA-bonded cermet, Ceram. Int., 45(2019), No. 15, p. 19077. doi: 10.1016/j.ceramint.2019.06.152
      [20]
      S.Y. Ahn and S. Kang, Formation of core/rim structures in Ti(C,N)–WC–Ni cermets via a dissolution and precipitation process, J. Am. Ceram. Soc., 83(2000), No. 6, p. 1489. doi: 10.1111/j.1151-2916.2000.tb01415.x
      [21]
      Q.B. You, J. Xiong, Z.X. Guo, J.B. Liu, T.E. Yang, and C.T. Qin, Microstructure and properties of CVD coated Ti(C,N)-based cermets with varying WC additions, Int. J. Refract. Met. Hard Mater., 81(2019), p. 299. doi: 10.1016/j.ijrmhm.2019.02.027
      [22]
      Y. Li, N. Liu, X.B. Zhang, and C.L. Rong, Effect of WC content on the microstructure and mechanical properties of (Ti, W)(C,N)–Co cermets, Int. J. Refract. Met. Hard Mater., 26(2008), No. 1, p. 33. doi: 10.1016/j.ijrmhm.2007.01.003
      [23]
      D.W. Pashley, The nucleation, growth, structure and epitaxy of thin surface films, Adv. Phys., 14(1965), No. 55, p. 327. doi: 10.1080/00018736500101071
      [24]
      T.Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111), J. Vac. Sci. Technol. A: Vac. Surf. Films, 20(2002), No. 3, p. 583. doi: 10.1116/1.1458944
      [25]
      C.V. Thompson, Grain growth in polycrystalline thin films of semiconductors, Interface Sci., 6(1998), No. 1-2, p. 85.
      [26]
      C.H. Hsu, C.C. Lee, and W.Y. Ho, Filter effects on the wear and corrosion behaviors of arc deposited (Ti, Al)N coatings for application on cold-work tool steel, Thin Solid Films, 516(2008), No. 15, p. 4826. doi: 10.1016/j.tsf.2007.09.017
      [27]
      J.M. Lackner, W. Waldhauser, R. Ebner, J. Keckés, and T. Schöberl, Room temperature deposition of (Ti,Al)N and (Ti,Al)(C,N) coatings by pulsed laser deposition for tribological applications, Surf. Coat. Technol., 177-178(2004), p. 447. doi: 10.1016/S0257-8972(03)00911-3
      [28]
      A. Laor, L. Zevin, J. Pelleg, and N. Croitoru, Anisotropy in residual strains and the lattice parameter of reactive sputter-deposited ZrN films, Thin Solid Films, 232(1993), No. 2, p. 143. doi: 10.1016/0040-6090(93)90001-6
      [29]
      A. Leyland and A. Matthews, On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour, Wear, 246(2000), No. 1-2, p. 1. doi: 10.1016/S0043-1648(00)00488-9
      [30]
      T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, and I.G. Brown, Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, MRS Online Proc. Lib., 383(1995), No. 1, p. 447. doi: 10.1557/PROC-383-447
      [31]
      S.J. Bull, D.G. Bhat, and M.H. Staia, Properties and performance of commercial TiCN coatings. Part 2: Tribological performance, Surf. Coat. Technol., 163-164(2003), p. 507. doi: 10.1016/S0257-8972(02)00651-5
      [32]
      S.J. Bull, Failure modes in scratch adhesion testing, Surf. Coat. Technol., 50(1991), No. 1, p. 25. doi: 10.1016/0257-8972(91)90188-3
      [33]
      G.S. Fox-Rabinovich, A.I. Kovalev, M.H. Aguirre, B.D. Beake, K. Yamamoto, S.C. Veldhuis, J.L. Endrino, D.L. Wainstein, and A.Y. Rashkovskiy, Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials, Surf. Coat. Technol., 204(2009), No. 4, p. 489. doi: 10.1016/j.surfcoat.2009.08.021
      [34]
      G.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, L.S. Shuster, and L. Ning, Self-adaptive wear behavior of nano-multilayered TiAlCrN/WN coatings under severe machining conditions, Surf. Coat. Technol., 201(2006), No. 3-4, p. 1852. doi: 10.1016/j.surfcoat.2006.03.010
      [35]
      X.P. Ren and Z.Q. Liu, Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 937. doi: 10.1007/s12613-018-1643-2

    Catalog


    • /

      返回文章
      返回