留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  4786
  • HTML全文浏览量:  1639
  • PDF下载量:  81
  • 被引次数: 0
Saeid Jabbarzare, Hamid Reza Bakhsheshi-Rad, Amir Abbas Nourbakhsh, Tahmineh Ahmadi, and Filippo Berto, Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 305-319. https://doi.org/10.1007/s12613-020-2201-2
Cite this article as:
Saeid Jabbarzare, Hamid Reza Bakhsheshi-Rad, Amir Abbas Nourbakhsh, Tahmineh Ahmadi, and Filippo Berto, Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 305-319. https://doi.org/10.1007/s12613-020-2201-2
引用本文 PDF XML SpringerLink
研究论文

氧化石墨烯对镁基纳米复合材料腐蚀、力学和生物学性能的影响

  • 通讯作者:

    Hamid Reza Bakhsheshi-Rad    E-mail: rezabakhsheshi@gmail.com

    Amir Abbas Nourbakhsh    E-mail: anourbakhs@yahoo.com

  • 本研究调查了氧化石墨烯 (GO) 对 Mg–Zn–Mn (MZM) 纳米复合材料的力学和腐蚀行为、抗菌性能和电池响应的影响。通过半粉末冶金方法制备了具有不同含量 GO(0.5wt%、1.0wt% 和 1.5wt%)的 MZM/GO 纳米复合材料。通过硬度、压缩、腐蚀、抗菌和细胞毒性测试分析了GO对MZM纳米复合材料的影响。实验结果表明,随着GO含量的增加(0.5wt%和1.5wt%),MZM纳米复合材料的硬度值、抗压强度和抗菌性能增加,而细胞活力和成骨水平降低。添加 1.5wt% GO。此外,电化学检测结果表明,在 0.5wt% GO 中封装后 MZM 合金的腐蚀行为显着增强。总之,GO增强的 MZM 纳米复合材料可用于植入物应用,因为它们具有抗菌性能和较好的力学性能。

  • Research Article

    Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite

    + Author Affiliations
    • This study investigates the effect of graphene oxide (GO) on the mechanical and corrosion behavior, antibacterial performance, and cell response of Mg–Zn–Mn (MZM) nanocomposite. MZM/GO nanocomposites with different amounts of GO (i.e., 0.5wt%, 1.0wt%, and 1.5wt%) were fabricated by the semi-powder metallurgy method. The influence of GO on the MZM nanocomposite was analyzed through the hardness, compressive, corrosion, antibacterial, and cytotoxicity tests. The experimental results showed that, with the increase in the amount of GO (0.5wt% and 1.5wt%), the hardness value, compressive strength, and antibacterial performance of the MZM nanocomposite increased, whereas the cell viability and osteogenesis level decreased after the addition of 1.5wt% GO. Moreover, the electrochemical examination results showed that the corrosion behavior of the MZM alloy was significantly enhanced after encapsulation in 0.5wt% GO. In summary, MZM nanocomposites reinforced with GO can be used for implant applications because of their antibacterial performance and mechanical property.

    • loading
    • Supplementary Informations12613-020-2201-2.docx
    • [1]
      A.H.M. Sanchez, B.J.C. Luthringer, F. Feyerabend, and R. Willumeit, Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomater., 13(2015), p. 16. doi: 10.1016/j.actbio.2014.11.048
      [2]
      P. Xiong, Z.J. Jia, M. Li, W.H. Zhou, J.L. Yan, Y.H. Wu, Y. Cheng, and Y.F. Zheng, Biomimetic Ca, Sr/P-doped silk fibroin films on Mg–1Ca alloy with dramatic corrosion resistance and osteogenic activities, ACS Biomater. Sci. Eng., 4(2018), No. 9, p. 3163. doi: 10.1021/acsbiomaterials.8b00787
      [3]
      N. Li and Y.F. Zheng, Novel magnesium alloys developed for biomedical application: A review, J. Mater. Sci. Technol., 29(2013), No. 6, p. 489. doi: 10.1016/j.jmst.2013.02.005
      [4]
      Y.J. Chen, Z.G. Xu, C. Smith, and J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater., 10(2014), No. 11, p. 4561. doi: 10.1016/j.actbio.2014.07.005
      [5]
      H.R. Bakhsheshi-Rad, E. Hamzah, S.L.J. Yii, A. Mostafa, R. Ebrahimi-Kahrizsangi, and M. Medraj, Characterisation and thermodynamic calculations of biodegradable Mg–2.2Zn–3.7Ce and Mg–Ca–2.2Zn–3.7Ce alloys, Mater. Sci. Technol., 33(2017), No. 11, p. 1333. doi: 10.1080/02670836.2017.1288777
      [6]
      M. Ali, M.A. Hussein, and N. Al-Aqeeli, Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, J. Alloys Compd., 792(2019), p. 1162. doi: 10.1016/j.jallcom.2019.04.080
      [7]
      Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable metals, Mater. Sci. Eng. R, 77(2014), p. 1. doi: 10.1016/j.mser.2014.01.001
      [8]
      A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
      [9]
      H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, M. Daroonparvar, S. Parham, Z. Hadisi, and M.A.M. Yajid, Titania–carbon nanotubes nanocomposite coating on Mg alloy: Microstructural characterisation and mechanical properties, Mater. Sci. Technol., 34(2018), No. 4, p. 378. doi: 10.1080/02670836.2017.1393975
      [10]
      M.S. Song, R.C. Zeng, Y.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, and X.B. Chen, Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review, J. Mater. Sci. Technol., 35(2019), No. 4, p. 535. doi: 10.1016/j.jmst.2018.10.008
      [11]
      D.Q. Wan, Y.L. Hu, S.T. Ye, Z.M. Li, L.L. Li, and Y. Huang, Effect of alloying elements on magnesium alloy damping capacities at room temperature, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 760. doi: 10.1007/s12613-019-1789-6
      [12]
      Y.F. Zheng, X.N. Gu, Y.L. Xi, and D.L. Chai, In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy, Acta Biomater., 6(2010), No. 5, p. 1783. doi: 10.1016/j.actbio.2009.10.009
      [13]
      I. Lonardelli, M. Bortolotti, W. van Beek, L. Girardini, M. Zadra, and H.K.D.H. Bhadeshia, Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal stability studies, Mater. Sci. Eng. A, 555(2012), p. 139. doi: 10.1016/j.msea.2012.06.043
      [14]
      I. Lonardelli, L. Girardini, L. Maines, C. Menapace, A. Molinari, and H.K.D.H. Bhadeshia, Nanostructured bainitic steel obtained by powder metallurgy approach: Structure, transformation kinetics and mechanical properties, Powder Metall., 55(2012), No. 4, p. 256. doi: 10.1179/0032589912Z.00000000079
      [15]
      F. Witte, The history of biodegradable magnesium implants: A review, Acta Biomater., 6(2010), No. 5, p. 1680. doi: 10.1016/j.actbio.2010.02.028
      [16]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [17]
      Y.Y. Song, H.K.D.H. Bhadeshia, and D.W. Suh, Stability of stainless-steel nanoparticle and water mixtures, Powder Technol., 272(2015), p. 34. doi: 10.1016/j.powtec.2014.11.026
      [18]
      M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn–0.5Ag alloy: Prepared by mechanical alloying for implant applications, Composites Part B, 190(2020), art. No. 107947. doi: 10.1016/j.compositesb.2020.107947
      [19]
      H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys, Corros. Sci., 64(2012), p. 184.
      [20]
      M. Khosravi, M. Mansouri, A. Gholami, and Y. Yaghoubinezhad, Effect of graphene oxide and reduced graphene oxide nanosheets on the microstructure and mechanical properties of mild steel jointing by flux-cored arc welding, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 505. doi: 10.1007/s12613-020-1966-7
      [21]
      C. Liu, J. Shen, K.W.K. Yeung, and S.C. Tjong, Development and antibacterial performance of novel polylactic acid–graphene oxide–silver nanoparticle hybrid nanocomposite mats prepared by electrospinning, ACS Biomater. Sci. Eng., 3(2017), No. 3, p. 471. doi: 10.1021/acsbiomaterials.6b00766
      [22]
      Ö. Güler and N. Bağcı, A short review on mechanical properties of graphene reinforced metal matrix composites, J. Mater. Res. Technol., 9(2020), No. 3, p. 6808. doi: 10.1016/j.jmrt.2020.01.077
      [23]
      S. Ramezanzade, G.R. Ebrahimi, M.T. Parizi, and H.R. Ezatpour, Microstructure and mechanical characterizations of graphene nanoplatelets-reinforced Mg–Sr–Ca alloy as a novel composite in structural and biomedical applications, J. Compos. Mater., 54(2020), No. 5, p. 711. doi: 10.1177/0021998319867464
      [24]
      H.M. Hegab, A. ElMekawy, L. Zou, D. Mulcahy, C.P. Saint, and M. Ginic-Markovic, The controversial antibacterial activity of graphene-based materials, Carbon, 105(2016), p. 362. doi: 10.1016/j.carbon.2016.04.046
      [25]
      Q.H. Yuan, G.H. Zhou, L. Liao, Y. Liu, and L. Luo, Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets, Carbon, 127(2018), p. 177. doi: 10.1016/j.carbon.2017.10.090
      [26]
      M. Rashad, F.S. Pan, M. Asif, and A. Ullah, Improved mechanical properties of magnesium–graphene composites with copper–graphene hybrids, Mater. Sci. Technol., 31(2015), No. 12, p. 1452. doi: 10.1179/1743284714Y.0000000726
      [27]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [28]
      X. Du, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites, Mater. Sci. Eng. A, 711(2018), p. 633. doi: 10.1016/j.msea.2017.11.040
      [29]
      M. Wang, Y. Zhao, L.D. Wang, Y.P. Zhu, X.J. Wang, J. Sheng, Z.Y. Yang, H.L. Shi, Z.D. Shi, and W.D. Fei, Achieving high strength and ductility in graphene/magnesium composite via an in situ reaction wetting process, Carbon, 139(2018), p. 954. doi: 10.1016/j.carbon.2018.08.009
      [30]
      V.B. Mohan, K.T. Lau, D. Hui, and D. Bhattacharyya, Graphene-based materials and their composites: A review on production, applications and product limitations, Composites Part B, 142(2018), p. 200. doi: 10.1016/j.compositesb.2018.01.013
      [31]
      M. Pul, Effect of sintering temperature on pore ratio and mechanical properties of composite structure in nano graphene reinforced ZA27 based composites, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 232. doi: 10.1007/s12613-019-1926-2
      [32]
      M. Rashad, F.S. Pan, H.H. Hu, M. Asif, S. Hussain, and J. She, Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets, Mater. Sci. Eng. A, 630(2015), p. 36. doi: 10.1016/j.msea.2015.02.002
      [33]
      W. Han, Z.N. Wu, Y. Li, and Y.Y. Wang, Graphene family nanomaterials (GFNs)—Promising materials for antimicrobial coating and film: A review, Chem. Eng. J., 358(2019), p. 1022. doi: 10.1016/j.cej.2018.10.106
      [34]
      W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, and M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 723. doi: 10.1007/s12613-016-1286-0
      [35]
      L.Q. Wu, R.Z. Wu, L.G. Hou, J.H. Zhang, and M.L. Zhang, Microstructure, mechanical properties and wear performance of AZ31 matrix composites reinforced by graphene nanoplatelets (GNPs), J. Alloys Compd., 750(2018), p. 530. doi: 10.1016/j.jallcom.2018.04.035
      [36]
      C.J. Shuai, B. Wang, Y.W. Yang, S.P. Peng, and C.D. Gao, 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties, Composites Part B, 162(2019), p. 611. doi: 10.1016/j.compositesb.2019.01.031
      [37]
      K.S. Munir, C.E. Wen, and Y.C. Li, Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: A review, Adv. Biosyst., 3(2019), No. 3, art. No. 1800212. doi: 10.1002/adbi.201800212
      [38]
      C.D. Gao, P. Feng, S.P. Peng, and C.J. Shuai, Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair, Acta Biomater., 61(2017), p. 1. doi: 10.1016/j.actbio.2017.05.020
      [39]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [40]
      C.J. Shuai, W. Guo, P. Wu, W.J. Yang, S. Hu, Y. Xia, and P. Feng, A graphene oxide–Ag co-dispersing nanosystem: Dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds, Chem. Eng. J., 347(2018), p. 322. doi: 10.1016/j.cej.2018.04.092
      [41]
      X.F. Zou, L. Zhang, Z.J. Wang, and Y. Luo, Mechanisms of the antimicrobial activities of graphene materials, J. Am. Chem. Soc., 138(2016), No. 7, p. 2064. doi: 10.1021/jacs.5b11411
      [42]
      B. Zhang, P. Wei, Z.X. Zhou, and T.T. Wei, Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights, Adv. Drug Delivery Rev., 105(2016), p. 145. doi: 10.1016/j.addr.2016.08.009
      [43]
      C.X. Guo, X.T. Zheng, Z.S. Lu, X.W. Lou, and C.M. Li, Biointerface by cell growth on layered graphene–artificial peroxidase–protein nanostructure for in situ quantitative molecular detection, Adv. Mater., 22(2010), No. 45, p. 5164. doi: 10.1002/adma.201001699
      [44]
      O. Guler, Y. Say, and B. Dikici, The effect of graphene nano-sheet (GNS) weight percentage on mechanical and corrosion properties of AZ61 and AZ91 based magnesium matrix composites, J. Compos. Mater., 54(2020), No. 28, p. 4473. doi: 10.1177/0021998320933345
      [45]
      M.E. Turan, Y. Sun, F. Aydin, H. Zengin, Y. Turen, and H. Ahlatci, Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites, Mater. Chem. Phys., 218(2018), p. 182. doi: 10.1016/j.matchemphys.2018.07.050
      [46]
      Y. Say, O. Guler, and B. Dikici, Carbon nanotube (CNT) reinforced magnesium matrix composites: The effect of CNT ratio on their mechanical properties and corrosion resistance, Mater. Sci. Eng. A, 798(2020), art. No. 139636. doi: 10.1016/j.msea.2020.139636
      [47]
      Y. Mei, P.Z. Shao, M. Sun, G.Q. Chen, M. Hussain, F.L. Huang, Q. Zhang, X.S. Gao, Y.Y. Pei, S.J. Zhong, and G.H. Wu, Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 888. doi: 10.1007/s12613-020-2048-6
      [48]
      X. Zeng, J. Teng, J.G. Yu, A.S. Tan, D.F. Fu, and H. Zhang, Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 102. doi: 10.1007/s12613-018-1552-4
      [49]
      H.M. Xia, L. Zhang, Y.C. Zhu, N. Li, Y.Q. Sun, J.D. Zhang, and H.Z. Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
      [50]
      P.H. Chen, Y. Zhang, R.Q. Li, Y.X. Liu, and S.S. Zeng, Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 100. doi: 10.1007/s12613-019-1909-3
      [51]
      H. Pal and V. Sharma, Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver–palladium alloy composites, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1132. doi: 10.1007/s12613-014-1019-1
      [52]
      Z.C. Hou, L.Q. Xiong, Y.F. Liu, L. Zhu, and W.Z. Li, Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 133. doi: 10.1007/s12613-019-1717-9

    Catalog


    • /

      返回文章
      返回