留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(7)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1952
  • HTML全文浏览量:  326
  • PDF下载量:  79
  • 被引次数: 0
Guoxing Ren, Songwen Xiao, Caibin Liao, and Zhihong Liu, Activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 248-255. https://doi.org/10.1007/s12613-020-2205-y
Cite this article as:
Guoxing Ren, Songwen Xiao, Caibin Liao, and Zhihong Liu, Activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 248-255. https://doi.org/10.1007/s12613-020-2205-y
引用本文 PDF XML SpringerLink
研究论文

1623 K时SiO2饱和的MnO–SiO2渣和Al2O3饱和的MnO–SiO2–Al2O3渣中NiO的活度系数

  • 通讯作者:

    肖松文    E-mail: zhliu@csu.edu.cn

    刘志宏    E-mail: zhliu@csu.edu.cn

文章亮点

  • (1) 测定了SiO2饱和的MnO–SiO2渣和Al2O3饱和的MnO–SiO2渣和Al2O3渣中NiO的溶解度及活度系数。
  • (2) 考察了Ni在Cu–Ni合金与SiO2饱和的MnO–SiO2渣或Al2O3饱和的MnO–SiO2渣和Al2O3渣间的平衡分配行为。
  • (3) 建立了渣中NiO活度系数与其含量之间的关系模型。
  • MnO–SiO2二元系作为废旧锂离子电池、海洋锰结核还原熔炼过程中的基础渣型,测定有价金属(如镍)在渣中的溶解度、活度及活度系数热力学数据十分必要。为此,本文测定了温度1623 K、氧分压10−7,10−6,和10−5 Pa时SiO2饱和的MnO–SiO2渣和Al2O3饱和的MnO–SiO2–Al2O3渣中NiO的溶解度和活度系数。结果表明:在试验条件下,镍在MnO–SiO2渣和MnO–SiO2–Al2O3渣中主要以NiO形式存在,且渣中NiO的溶解度随着氧分压增加而增加;向MnO–SiO2渣中加入Al2O3可以降低渣中镍的溶解度,增加NiO的活度系数。此外,SiO2饱和的MnO–SiO2渣和Al2O3饱和的MnO–SiO2–Al2O3渣中NiO的活度系数(γNiO,以纯固体NiO为参考态)可分别按如下公式计算:γNiO = 8.58w(NiO) + 3.18; γNiO=11.06w(NiO) + 4.07, 其中,w(NiO)为渣中NiO的质量分数。

  • Research Article

    Activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K

    + Author Affiliations
    • As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO2 slags, this work investigated the activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K with controlled oxygen partial pressure levels of 10−7, 10−6, and 10−5 Pa. Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure. The nickel in the MnO–SiO2 slag and MnO–SiO2–Al2O3 slag existed as NiO under experimental conditions. The addition of Al2O3 in the MnO–SiO2 slag decreased the dissolution of nickel in the slag and increased the activity coefficient of NiO. Furthermore, the activity coefficient of NiO (γNiO), which is solid NiO, in the SiO2 saturated MnO–SiO2 slag and Al2O3 saturated MnO–SiO2–Al2O3 slag at 1623 K can be respectively calculated as γNiO = 8.58w(NiO) + 3.18 and γNiO = 11.06w(NiO) + 4.07, respectively, where w(NiO) is the NiO mass fraction in the slag.

    • loading
    • [1]
      C. Hanisch, J. Diekmann, A. Stieger, W. Haselrieder, and A. Kwade, Recycling of lithium-ion batteries, [in] Handbook of Clean Energy Systems, John Wiley & Sons, Ltd., Chichester, 2015, p. 1.
      [2]
      A. Home, LME Stock Surge Grounds High-Flying Nickel, But for How Long?, Jan Harve ed. Glacier Media Group, 2020 [2020-1-17]. https://www.mining.com/web/lme-stock-surge-grounds-high-flying-nickel-but-for-how-long/
      [3]
      NetworkNewsWire, Electric Vehicle Growth Creates East-Asian Battery Mineral Boom, NetworkNewsWire, New York, 2020 [2020-4-10]. https://www.prnewswire.com/news-releases/electric-vehicle-growth-creates-east-asian-battery-mineral-boom-301014990.html
      [4]
      M.Y. Chen, X.T. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, and Y. Wang, Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3(2019), No. 11, p. 2622. doi: 10.1016/j.joule.2019.09.014
      [5]
      G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO–SiO2–Al2O3 slag system, [in] Reddy R.G., Chaubal P., Pistorius P.C., Pal U. eds, Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham, 2016, p. 211.
      [6]
      P.K. Sen, Metals and materials from deep sea nodules: An outlook for the future, Int. Mater. Rev., 55(2010), No. 6, p. 364. doi: 10.1179/095066010X12777205875714
      [7]
      G. Senanayake, Acid leaching of metals from deep-sea manganese nodules – A critical review of fundamentals and applications, Miner. Eng., 24(2011), No. 13, p. 1379. doi: 10.1016/j.mineng.2011.06.003
      [8]
      N.S. Randhawa, J. Hait, and R.K. Jana, A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario, Hydrometallurgy, 165(2016), p. 166. doi: 10.1016/j.hydromet.2015.09.013
      [9]
      E.H. Jeong, C.W. Nam, K.H. Park, and J.H. Park, Sulfurization of Fe–Ni–Cu–Co alloy to matte phase by carbothermic reduction of calcium sulfate, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1103. doi: 10.1007/s11663-016-0590-4
      [10]
      S. Agarwal, K.K. Sahu, R.K. Jana, and S.P. Mehrotra, Recovery of Cu, Ni, Co and Mn from sea nodules by direct reduction smelting, [in] Proceedings of the Eighth (2009) ISOPE Ocean Mining Symposium, Chennai, 2009, p. 131.
      [11]
      D. Friedmann, A.K. Pophanken, and B. Friedrich, Pyrometallurgical treatment of high manganese containing deep sea nodules, J. Sustainable Metall., 3(2017), No. 2, p. 219. doi: 10.1007/s40831-016-0070-8
      [12]
      K.D. Mehta, C. Das, and B.D. Pandey, Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger, Hydrometallurgy, 105(2010), No. 1-2, p. 89. doi: 10.1016/j.hydromet.2010.08.002
      [13]
      R. Barik, K. Sanjay, B.K. Mishra, and M. Mohapatra, Micellar mediated selective leaching of manganese nodule in high temperature sulfuric acid medium, Hydrometallurgy, 165(2016), p. 44. doi: 10.1016/j.hydromet.2015.12.005
      [14]
      S.C. Das, Extraction of metals from polymetallic ocean nodules, [in] Proceeding National Symposium on Chemical and Allied Materials from Ocean, Calcutta, 1989, p. 9.
      [15]
      S.W. Xiao, G.X. Ren, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO–SiO2–Al2O3 slag system, J. Sustainable Metall., 3(2017), No. 4, p. 703. doi: 10.1007/s40831-017-0131-7
      [16]
      N.S. Randhawa, R.K. Jana, and N.N. Das, Silicomanganese production utilising low grade manganese nodules leaching residue, Miner. Process. Extr. Metall., 122(2013), No. 1, p. 6. doi: 10.1179/1743285512Y.0000000022
      [17]
      M. Sommerfeld, D. Friedmann, T. Kuhn, and B. Friedrich, “zero-waste”: A sustainable approach on pyrometallurgical processing of manganese nodule slags, Minerals, 8(2018), No. 12, art. No. 544. doi: 10.3390/min8120544
      [18]
      E.J. Grimsey, The effect of temperature on nickel solubility in silica saturated fayalite slags from 1523 to 1623 K, Metall. Trans. B, 19(1988), No. 2, p. 243. doi: 10.1007/BF02654208
      [19]
      R.G. Reddy and C.C. Acholonu, Distribution of nickel between copper–nickel and alumina saturated iron silicate slags, Metall. Trans. B, 15(1984), No. 1, p. 33. doi: 10.1007/BF02661060
      [20]
      H.M. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni–S melt and FeOX–SiO2 or FeOX–CaO based slag under controlled partial pressures, Mater. Trans., 43(2002), No. 9, p. 2219. doi: 10.2320/matertrans.43.2219
      [21]
      Y. Takeda, S. Ishiwata, and A. Yazawa, Distribution equilibria of minor elements between liquid copper and calcium ferrite slag, Trans. Jpn. Inst. Met., 24(1983), No. 7, p. 518. doi: 10.2320/matertrans1960.24.518
      [22]
      R.U. Pagador, M. Hino, and K. Itagaki, Distribution of minor elements between MgO saturated FeOx–MgO–SiO2 or FeOx–CaO–MgO–SiO2 slag and nickel alloy, Mater. Trans., JIM, 40(1999), No. 3, p. 225. doi: 10.2320/matertrans1989.40.225
      [23]
      H. Henao, M. Hino, and K. Itagaki, Distribution of Ni, Cr, Mn, Co and Cu between Fe–Ni alloy and FeOx–MgO–SiO2 base slags, Mater. Trans., 42(2001), No. 9, p. 1959. doi: 10.2320/matertrans.42.1959
      [24]
      G.Q. Li and F. Tsukihashi, Distribution equilibria of Fe, Co and Ni between MgO-saturated FeOx–MgO–SiO2 slag and Ni alloy, ISIJ Int., 41(2001), No. 11, p. 1303. doi: 10.2355/isijinternational.41.1303
      [25]
      H. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni–S melt and CaO–Al2O3 based slag in CO–CO2–SO2 gas mixtures at 1773 K, Mater. Trans., 43(2002), No. 11, p. 2873. doi: 10.2320/matertrans.43.2873
      [26]
      H.M. Henao and K. Itagaki, Phase equilibrium and distribution of minor elements between Ni–S melt and Al2O3–CaO–MgO slag at 1873 K, Metall. Mater. Trans. B, 35(2004), No. 6, p. 1041. doi: 10.1007/s11663-004-0060-2
      [27]
      X. Lu, T. Miki, and T. Nagasaka, Activity coefficients of NiO and CoO in CaO–Al2O3–SiO2 slag and their application to the recycling of Ni–Co–Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 25. doi: 10.1007/s12613-017-1375-8
      [28]
      G. Roghani, E. Jak, and P. Hayes, Phase equilibrium studies in the “MnO”–Al2O3–SiO2 system, Metall. Mater. Trans. B, 33(2002), No. 6, p. 827. doi: 10.1007/s11663-002-0066-6
      [29]
      S.H. Lee, S.M. Moon, D.J. Min, and J.H. Park, Thermodynamic behavior of nickel in CaO–SiO2–FetO slag, Metall. Mater. Trans. B, 33(2002), No. 1, p. 55. doi: 10.1007/s11663-002-0085-3
      [30]
      J.G. Park, H.S. Eom, W.W. Huh, Y.S. Lee, D.J. Min, and I. Sohn, A study in the thermodynamic behavior of nickel in the MgO–SiO2–FeO slag system, Steel Res. Int., 82(2011), No. 4, p. 415. doi: 10.1002/srin.201000151
      [31]
      E.J. Grimsey and X.L. Liu, The activity coefficient of cobalt oxide in silica-saturated iron silicate slags, Metall. Mater. Trans. B, 26(1995), No. 2, p. 229. doi: 10.1007/BF02660963
      [32]
      B. Derin and O. Yücel, The distribution of cobalt between Co-Cu alloys and Al2O3–FeO–Fe2O3–SiO2 slags, Scand. J. Metall., 31(2002), No. 1, p. 12. doi: 10.1034/j.1600-0692.2002.310103.x
      [33]
      C.C. Acholonu, Distribution of Copper, Cobalt, Nickel, Between Alloys and Silica-Unsaturated Iron Slags [Dissertation], University of Nevada, Reno, 1983, p. 9.

    Catalog


    • /

      返回文章
      返回