留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(11)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  2214
  • HTML全文浏览量:  577
  • PDF下载量:  79
  • 被引次数: 0
Siddharth Yadav, S.P. Tewari, J.K. Singh,  and S.C. Ram, Effects of mechanical vibration on the physical, metallurgical and mechanical properties of cast A308 (LM21) aluminum alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1206-1215. https://doi.org/10.1007/s12613-020-2209-7
Cite this article as:
Siddharth Yadav, S.P. Tewari, J.K. Singh,  and S.C. Ram, Effects of mechanical vibration on the physical, metallurgical and mechanical properties of cast A308 (LM21) aluminum alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1206-1215. https://doi.org/10.1007/s12613-020-2209-7
引用本文 PDF XML SpringerLink
研究论文

机械振动对铸造A308 (LM21)铝合金物理、冶金和力学性能的影响

  • 通讯作者:

    Siddharth Yadav    E-mail: siddharthy.rs.mec15@itbhu.ac.in

  • 本文研究了A308压铸合金在机械振动作用下凝固过程中的组织、物理和力学性能。采用功率放大器作为功率输入器件,在31 μm的恒定振幅下,采用不同频率(0、20、30、40、50 Hz)进行功率输入。采用X射线衍射、光学显微镜和扫描电子显微镜观察了固定和振动条件下铸态试样的形态变化。利用ImageJ软件对铸件的金相特征进行了评价。在30 Hz频率下,与固定铸造相比,初晶α-Al晶粒尺寸、枝晶臂间距、共晶硅平均面积、长径比和孔隙率等冶金特征平均值分别降低了34%、59%、56%、22%和62%。力学性能测试表明,在30 Hz频率下,铸件的屈服强度(YS)、抗拉强度(UTS)、伸长率(EL)和显微硬度(HV)分别比固定铸造提高了8%、13%、17%和16%。拉伸试样的断口表现为脆性面、解理面、韧性撕裂和韧窝形貌的混合断裂行为。小韧窝的存在表明在断裂前发生了塑性变形。
  • Research Article

    Effects of mechanical vibration on the physical, metallurgical and mechanical properties of cast A308 (LM21) aluminum alloy

    + Author Affiliations
    • This study investigated the microstructure, physical, and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification. Different frequencies (0, 20, 30, 40, and 50 Hz) at constant amplitude (31 μm) were employed using a power amplifier as the power input device. X-ray diffraction, optical microscopy, and scanning electron microscopy were used to examine the morphological changes in the cast samples under stationary and vibratory conditions. Metallurgical features of the castings were evaluated using ImageJ software. The average values of metallurgical features, including primary α-Al grain size, dendrite arm spacing, average area of eutectic silicon, aspect ratio, and percentage porosity, reduced by 34%, 59%, 56%, 22%, and 62%, respectively, at 30 Hz frequency compared with stationary casting. Mechanical tests of the cast samples showed that the yield strength (YS), ultimate tensile strength (UTS), percentage elongation (%EL), and microhardness (HV) increased by 8%, 13%, 17%, and 16%, respectively, at 30 Hz frequency compared with stationary casting. The fractured surface of the tensile specimens exhibited mixed-mode fracture behavior because of brittle facets, cleavage facets, ductile tearing, and dimple morphologies. The presence of small dimples showed that plastic deformation occurred before fracture.
    • loading
    • [1]
      N. Abu-Dheir, M. Khraisheh, K. Saito, and A. Male, Silicon morphology modification in the eutectic Al–Si alloy using mechanical mold vibration, Mater. Sci. Eng. A, 393(2005), No. 1-2, p. 109. doi: 10.1016/j.msea.2004.09.038
      [2]
      S. Kumar and S.P. Tewari, Effect of mold oscillation on the metallurgical characterization and mechanical properties of A319 aluminum alloy casting, Int. J. Cast Met. Res., 31(2018), No. 1, p. 1. doi: 10.1080/13640461.2017.1333220
      [3]
      S.C. Ram, K. Chattopadhyay, and I. Chakrabarty, High temperature tensile properties of centrifugally cast in situ Al–Mg2Si functionally graded composites for automotive cylinder block liners, J. Alloys Compd., 724(2017), p. 84. doi: 10.1016/j.jallcom.2017.06.306
      [4]
      N. Omura, Y. Murakami, M.J. Li, T. Tamura, K.J. Miwa, H. Furukawa, and M. Harada, Effects of mechanical vibration on cooling rate and DAS of AC4C aluminum alloy gravity die castings, Mater. Trans., 50(2009), No. 11, p. 2604. doi: 10.2320/matertrans.M2009247
      [5]
      R. Kumar, M.S. Ansari, S.S. Mishra, and A. Kumar, Effect of mould vibration on microstructure and mechanical properties of casting during solidification, Int. J. Eng. Res. Technol., 3(2014), No. 4, p. 90.
      [6]
      S.M.A.E. Hallem, I. Ghayad, M. Eisaa, N. Nassif, M. Shoeib, and H. Soliman, Effect of ultrasonic and mechanical vibration on the corrosion behavior of Mg–3Zn–0.8Ca biodegradable alloy, Int. J. Electrochem. Sci., 9(2014), No. 4, p. 2005.
      [7]
      S. Lü, S.S. Wu, W. Dai, C. Lin, and P. An, The indirect ultrasonic vibration process for rheo-squeeze casting of A356 aluminum alloy, J. Mater. Process. Technol., 212(2012), No. 6, p. 1281. doi: 10.1016/j.jmatprotec.2012.01.018
      [8]
      Y. Mizutani, K.J. Miwa, T. Tamura, Y. Nakai, and Y. Otsuka, Grain refinement of tough pitch copper by electromagnetic vibrations during solidification, Mater. Trans., 47(2006), No. 7, p. 1793. doi: 10.2320/matertrans.47.1793
      [9]
      R. Prasad, S.P. Tewari, and J.K. Singh, Effect of multi-pass friction stir processing on microstructural, mechanical and tribological behaviour of as-cast Al–Zn–Mg–Cu alloy, Mater. Res. Express, 6(2019), No. 9, art. No. 096579. doi: 10.1088/2053-1591/ab308c
      [10]
      H. Kumar, R. Prasad, P. Kumar, S.P. Tewari, and J.K. Singh, Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing, J. Alloys Compd., 831(2020), art. No. 154832. doi: 10.1016/j.jallcom.2020.154832
      [11]
      R. Prasad, S.P. Tewari, and J.K. Singh, Microstructural and wear characterization of friction stir processed ZrB2/AA7075 in situ composites, Mater. Res. Express, 6(2019), No. 8, art. No. 086514. doi: 10.1088/2053-1591/ab1a1a
      [12]
      B. Rahimi, H. Khosravi, and M. Haddad-Sabzevar, Microstructural characteristics and mechanical properties of Al-2024 alloy processed via a rheocasting route, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 59. doi: 10.1007/s12613-015-1044-8
      [13]
      H. Khosravi and F. Akhlaghi, Comparison of microstructure and wear resistance of A356-SiCp composites processed via compocasting and vibrating cooling slope, Trans. Nonferrous Met. Soc. China, 25(2015), No. 8, p. 2490. doi: 10.1016/S1003-6326(15)63867-5
      [14]
      R.G. Guan and D. Tie, A review on grain refinement of aluminum alloys: Progresses, challenges and prospects, Acta Metall. Sinica Engl. Lett., 30(2017), No. 5, p. 409. doi: 10.1007/s40195-017-0565-8
      [15]
      G. Chirita, I. Stefanescu, D. Soares, and F.S. Silva, Influence of vibration on the solidification behaviour and tensile properties of an Al–18wt%Si alloy, Mater. Des., 30(2009), No. 5, p. 1575. doi: 10.1016/j.matdes.2008.07.045
      [16]
      W.M. Jiang, X. Chen, B.J. Wang, Z.T. Fan, and H.B. Wu, Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting, Int. J. Adv. Manuf. Technol., 83(2016), No. 1-4, p. 167. doi: 10.1007/s00170-015-7586-0
      [17]
      F. Taghavi, H. Saghafian, and Y.H.K. Kharrazi, Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy, Mater. Des., 30(2009), No. 1, p. 115. doi: 10.1016/j.matdes.2008.04.034
      [18]
      W.M. Jiang, Z.T. Fan, X Chen, B.J. Wang, and H.B. Wu, Combined effects of mechanical vibration and wall thickness on microstructure and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting, Mater. Sci. Eng. A, 619(2014), p. 228. doi: 10.1016/j.msea.2014.09.102
      [19]
      R.S. Richards and W. Rostoker, The influence of vibration on the solidification of an aluminum alloy, ASM-Trans, 48(1956), p. 885.
      [20]
      K. Kocatepe, Effect of low frequency vibration on porosity of LM25 and LM6 alloys, Mater. Des., 28(2007), No. 6, p. 1767. doi: 10.1016/j.matdes.2006.05.004
      [21]
      H. Saghafian, J. Hedjazi, and Y. Kharrazi, Investigation on the Influence of Mechanical Vibration upon Segregation Phenomenon in 2024 Wrought Aluminum Alloy [Dissertation], Iran University of Science and Technology, Tehran, 1990.
      [22]
      J. Campbell, Effects of vibration during solidification, Int. Met. Rev., 26(1981), No. 1, p. 71. doi: 10.1179/imr.1981.26.1.71
      [23]
      S. Kumar and S.P. Tewari, Evaluation of microstructure of A356 aluminum alloy casting prepared under vibratory conditions during the solidification, Sādhanā, 41(2016), No. 10, p. 1203. doi: 10.1007/s12046-016-0547-y
      [24]
      S. Kumar and S.P. Tewari, Metallurgical and mechanical characterization of A319 aluminum alloy casting solidified under mold oscillation, Int. J. Metalcast., 12(2018), No. 1, p. 28. doi: 10.1007/s40962-017-0135-x
      [25]
      V. Selivorstov, Y. Dotsenko, and K. Borodianskiy, Influence of low-frequency vibration and modification on solidification and mechanical properties of Al–Si casting alloy, Materials, 10(2017), No. 5, art. No. 560. doi: 10.3390/ma10050560
      [26]
      T.P. Fisher, Effects of vibrational energy on the solidification of aluminium alloys, Br. Foundryman, 66(1973), No. 3, p. 71.
      [27]
      V.P. Patel, J.V. Patel, A.V. Patel, and B.V. Bhuva, A review on microstructure and mechanical properties of aluminium alloy using mold vibration, Int. Res. J. Eng. Technol. 6(2019), No. 12, p. 1047.
      [28]
      J. Deshpande, The Effect of Mechanical Mold Vibrations on the Characteristics of Aluminum Casting Alloys [Dissertation], Worcester Polytechnic Institute, Worcester, 2006, p. 8.
      [29]
      W.M. Jiang, Z.T. Fan, Y.C. Dai, and C. Li, Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy, Mater. Sci. Eng. A, 597(2014), p. 237. doi: 10.1016/j.msea.2014.01.009
      [30]
      M.C. Mehta, D. Mandal, and S.K. Chaudhury, Effects of amplitude of die vibration on cast structure of Al4.5Cu alloy, Int. J. Metalcast., 13(2019), No. 2, p. 438. doi: 10.1007/s40962-018-0271-y
      [31]
      S. Lü, S.S. Wu, L. Wan, and P. An, Microstructure and tensile properties of wrought Al alloy 5052 produced by rheo-squeeze casting, Metall. Mater. Trans. A, 44(2013), No. 6, p. 2735. doi: 10.1007/s11661-013-1637-7
      [32]
      J.W. Zhao, S.S. Wu, L.Z. Xie, P. An, and Y.W. Mao, Effects of vibration and grain refiner on microstructure of semisolid slurry of hypoeutectic Al–Si alloy, Trans. Nonferrous Met. Soc. China, 18(2008), No. 4, p. 842. doi: 10.1016/S1003-6326(08)60146-6
      [33]
      C. Vivès, Crystallization of aluminium alloys in the presence of cavitation phenomena induced by a vibrating electromagnetic pressure, J. Cryst. Growth, 158(1996), No. 1-2, p. 118. doi: 10.1016/0022-0248(95)00344-4
      [34]
      H. Nguyen, The Effects of Solidification Rates on Porosity Formation and Cast Microstructure of Aluminum Alloy A356, Grand Valley State University, Grand Rapids, 2005, p. 1.
      [35]
      X. Jian, H. Xu, T.T. Meek, and Q. Han, Effect of power ultrasound on solidification of aluminum A356 alloy, Mater. Lett., 59(2005), No. 2-3, p. 190. doi: 10.1016/j.matlet.2004.09.027
      [36]
      W. Abdul-Karem, N. Green, and K.F. Al-Raheem, Vibration-assisted filling capability in thin wall investment casting, Int. J. Adv. Manuf. Technol., 61(2012), No. 9-12, p. 873. doi: 10.1007/s00170-011-3774-8
      [37]
      J.Q. Li, Z.T. Fan, X.P. Dong, W. Liu, and X.Y. Li, Microstructure and mechanical properties of lost foam casting AZ91D alloy produced with mechanical vibration, Adv. Mater. Res., 213(2011), p. 5. doi: 10.4028/www.scientific.net/AMR.213.5
      [38]
      E. Rincón, H.F. López, M.M. Cisneros, H. Mancha, and M.A. Cisneros, Effect of temperature on the tensile properties of an as-cast aluminum alloy A319, Mater. Sci. Eng. A, 452-453(2007), p. 682. doi: 10.1016/j.msea.2006.11.029
      [39]
      C. Limmaneevichitr, S. Pongananpanya, and J. Kajornchaiyakul, Metallurgical structure of A356 aluminum alloy solidified under mechanical vibration: An investigation of alternative semi-solid casting routes, Mater. Des., 30(2009), No. 9, p. 3925. doi: 10.1016/j.matdes.2009.01.036

    Catalog


    • /

      返回文章
      返回