留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1711
  • HTML全文浏览量:  299
  • PDF下载量:  92
  • 被引次数: 0
Yiru Yang, Qipeng Bao, Lei Guo, Zhe Wang,  and Zhancheng Guo, Numerical simulation of flash reduction in a drop tube reactor with variable temperatures, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 228-238. https://doi.org/10.1007/s12613-020-2210-1
Cite this article as:
Yiru Yang, Qipeng Bao, Lei Guo, Zhe Wang,  and Zhancheng Guo, Numerical simulation of flash reduction in a drop tube reactor with variable temperatures, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 228-238. https://doi.org/10.1007/s12613-020-2210-1
引用本文 PDF XML SpringerLink
研究论文

变温滴管炉中的闪速还原过程数值模拟

  • 通讯作者:

    郭磊    E-mail: leiguo@ustb.edu.cn

    郭占成    E-mail: zcguo@ustb.edu.cn

文章亮点

  • (1) 采用具有温度梯度的高温管式炉结合数值模拟的方式开展反应动力学研究。
  • (2) 构建实测的一维温度分布和三维反应流动相结合的综合数值模型,从而提高模型稳定性。
  • (3) 预测了矿粉颗粒在实验室条件下的闪速还原过程,并考察了相关变量的影响规律。
  • 闪速炼铁技术FIT被认为是一种很有潜力的绿色炼铁技术。为了准确预测闪速炼铁过程,本文基于实验室规模的高温管式炉构建了包含颗粒反应动力学在内的计算流体动力学(CFD)模型。与此同时,在相同尺寸的滴管炉中进行了对应的闪速还原实验,用以验证CFD模型的准确性。矿石颗粒的还原度被选作模型预测主准确性的关键指标,最终结果表明,数值模拟与实验结果中的还原度吻合较好。本文还利用数值模型进一步研究该过程的影响因素,包括不同粒径(20-110 μm)、峰值温度(1250-1550℃)和还原气氛(H2/CO)。高度随时间的变化表明,小颗粒(50 μm)比大颗粒具有更长的停留时间(3.6 s),在CO气氛中的颗粒停留时间略比长于H2气氛。然而,实验和分析结果均表明,CO中颗粒的还原程度明显低于H2气氛中的还原程度,这是由于在同等条件下,H2还原铁矿石的动力学速率要快于CO还原。数值模拟的结果表明,制备90%以上高还原度颗粒的最佳实验粒度和峰值温度分别为氢气气氛下的50 μm和1350℃,CO气氛下的40 μm和1550℃。

  • Research Article

    Numerical simulation of flash reduction in a drop tube reactor with variable temperatures

    + Author Affiliations
    • A computational fluid dynamics (CFD) model was developed to accurately predict the flash reduction process, which is considered an efficient alternative ironmaking process. Laboratory-scale experiments were conducted in drop tube reactors to verify the accuracy of the CFD model. The reduction degree of ore particles was selected as a critical indicator of model prediction, and the simulated and experimental results were in good agreement. The influencing factors, including the particle size (20–110 μm), peak temperature (1250–1550°C), and reductive atmosphere (H2/CO), were also investigated. The height variation lines indicated that small particles (50 μm) had a longer residence time (3.6 s) than large particles. CO provided a longer residence time (~1.29 s) than H2 (~1.09 s). However, both the experimental and analytical results showed that the reduction degree of particles in CO was significantly lower than that in H2 atmosphere. The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50 μm and 1350°C in H2 atmosphere, and 40 μm and 1550°C in CO atmosphere, respectively.

    • loading
    • [1]
      C.B. Xue and D.Q. Cang, A brief overview of low CO2 emission technologies for iron and steel making, J. Iron Steel Res. Int., 17(2010), No. 3, p. 1. doi: 10.1016/S1006-706X(10)60064-7
      [2]
      M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, and M. Dahari, A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing, Renewable Sustainable Energy Rev., 50(2015), p. 594. doi: 10.1016/j.rser.2015.05.026
      [3]
      M. Naito, K. Takeda, and Y. Matsui, Ironmaking technology for the last 100 years: deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process, ISIJ Int., 55(2015), No. 1, p. 7. doi: 10.2355/isijinternational.55.7
      [4]
      A. Hasanbeigi, M. Arens, and L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review, Renewable Sustainable Energy Rev, 33(2014), p. 645. doi: 10.1016/j.rser.2014.02.031
      [5]
      K. Meijer, C. Zeilstra, C. Teerhuis, M. Ouwehand, and J. van der Stel, Developments in alternative ironmaking, Trans. Indian Inst. Met., 66(2013), No. 5, p. 475.
      [6]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [7]
      Y.J. Wang, H.B. Zuo, and J. Zhao, Recent progress and development of ironmaking in China as of 2019: An overview, Ironmaking Steelmaking, 47(2020), No. 6, p. 640. doi: 10.1080/03019233.2020.1794471
      [8]
      X.L. Xi, M. Feng, L.W. Zhang, and Z. R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
      [9]
      F. Li, Q.J. Zhao, M.S. Chu, J. Tang, Z.G. Liu, J.X. Wang, and S.K. Li, Preparing high-purity iron by direct reduction‒smelting separation of ultra-high-grade iron concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 454. doi: 10.1007/s12613-019-1959-6
      [10]
      C. Feng, M.S. Chu, J. Tang, and Z.G. Liu, Effects of smelting parameters on the slag/metal separation behaviors of hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 609. doi: 10.1007/s12613-018-1608-5
      [11]
      T. Zhang, C. Lei, and Q.S. Zhu, Reduction of fine iron ore via a two-step fluidized bed direct reduction process, Powder Technol., 254(2014), p. 1. doi: 10.1016/j.powtec.2014.01.004
      [12]
      L. Guo, Y.W. Zhong, J.T. Gao, Z.R. Yang, and Z.C. Guo, Influence of coating MgO with coprecipitation method on sticking during fluidized bed reduction of Fe2O3 particles, Powder Technol., 284(2015), p. 210. doi: 10.1016/j.powtec.2015.06.067
      [13]
      A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
      [14]
      A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part II. Low temperature reduction of magnetite, Thermochim. Acta, 456(2007), No. 2, p. 75. doi: 10.1016/j.tca.2007.01.014
      [15]
      W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A, 326(2007), No. 1, p. 17. doi: 10.1016/j.apcata.2007.03.021
      [16]
      L. Guo, J.T. Gao, S.P. Zhong, Q.P. Bao, Z.C. Guo. In situ observation of iron ore particle reduction above 1373 K by confocal microscopy, J. Iron Steel Res. Int., 26(2018), No. 1, p. 32.
      [17]
      L.Y. Xing, Y.X. Qu, C.S. Wang, L. Shao, and Z.S. Zou, Gas–liquid reduction behavior of hematite ore fines in a flash reduction process, Metall. Mater. Trans. B, 51(2020), No. 3, p. 1233. doi: 10.1007/s11663-020-01811-1
      [18]
      Y.X. Qu, Y. X.Yang, Z.S. Zou, C. Zeilstra, K. Meijer, and R. Boom, Reduction kinetics of fine hematite ore particles with a high temperature drop tube furnace, ISIJ Int., 55(2015), No. 5, p. 952. doi: 10.2355/isijinternational.55.952
      [19]
      H.Y. Sohn and Y. Mohassab, Development of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissions, J. Sustainable Metall., 2(2016), No. 3, p. 216. doi: 10.1007/s40831-016-0054-8
      [20]
      H.Y. Sohn and S.E. Perez-Fontes, Computational fluid dynamics modeling of hydrogen−oxygen flame, Int. J. Hydrogen Energy, 41(2016), No. 4, p. 3284. doi: 10.1016/j.ijhydene.2015.12.013
      [21]
      Q. Wang, G.Q. Li, W. Zhang, and Y.X. Yang, An investigation of carburization behavior of molten iron for the flash ironmaking process, Metall. Mater. Trans. B, 50(2019), p. 2006. doi: 10.1007/s11663-019-01594-0
      [22]
      M.Y. Mohassab-Ahmed and H.Y. Sohn, Application of spectroscopic analysis techniques to the determination of slag structures and properties: Effect of water vapor on slag chemistry relevant to a novel flash ironmaking technology, JOM, 65(2013), No. 11, p. 1559. doi: 10.1007/s11837-013-0742-9
      [23]
      M.Y. Mohassab-Ahmed and H.Y. Sohn, Effect of water vapor content in H2−H2O−CO−CO2 mixtures on the activity of iron oxide in slags relevant to a novel flash ironmaking technology, Ironmaking Steelmaking, 41(2013), No. 9, p. 575.
      [24]
      F. Chen, Y. Mohassab, T. Jiang, and H.Y. Sohn, Hydrogen reduction kinetics of hematite concentrate particles relevant to a novel flash ironmaking process, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1133. doi: 10.1007/s11663-015-0332-z
      [25]
      F. Chen, Y. Mohassab, S.Q. Zhang, and H.Y. Sohn, Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash ironmaking process, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1716. doi: 10.1007/s11663-015-0345-7
      [26]
      H.T. Wang and H.Y. Sohn, Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process, Metall. Mater. Trans. B, 44(2013), No. 1, p. 133. doi: 10.1007/s11663-012-9754-z
      [27]
      M. Elzohiery, H.Y. Sohn, and Y. Mohassab, Kinetics of hydrogen reduction of magnetite concentrate particles in solid state relevant to flash ironmaking, Steel Res. Int., 88(2017), No. 2, p. 1600133. doi: 10.1002/srin.201600133
      [28]
      H.Y. Sohn, Energy Consumption and CO2 emissions in ironmaking and development of a novel flash technology, Metals, 10(2019), No. 1, p. 54. doi: 10.3390/met10010054
      [29]
      D.Q. Fan, Y. Mohassab, M. Elzohiery, and H.Y. Sohn, Analysis of the hydrogen reduction rate of magnetite concentrate particles in a drop tube reactor through CFD modeling, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1669. doi: 10.1007/s11663-016-0603-3
      [30]
      D.Q. Fan, H.Y. Sohn, Y. Mohassab, and M. Elzohiery, Computational fluid dynamics simulation of the hydrogen reduction of magnetite concentrate in a laboratory flash reactor, Metall. Mater. Trans. B, 47(2016), No. 6, p. 3489. doi: 10.1007/s11663-016-0797-4
      [31]
      X.N. Wang, G.Q. Fu, W. Li, and M.Y. Zhu, Numerical simulation of effect of operating conditions on flash reduction behaviour of magnetite under H2 atmosphere, Int. J. Hydrogen Energ, 44(2019), No. 48, p. 26261. doi: 10.1016/j.ijhydene.2019.08.089
      [32]
      X.N. Wang, G.Q. Fu, W. Li, and M.Y. Zhu, Numerical analysis of effect of water gas shift reaction on flash reduction behavior of hematite with syngas, ISIJ Int., 59(2019), No. 12, p. 2193. doi: 10.2355/isijinternational.ISIJINT-2019-215
      [33]
      J. Xu, N. Wang, Z.Y. Zhou, M. Chen, and P.F. Wang, Experimental and numerical studies of the gas-molten reduction behavior of blast furnace dust particles during in-flight process, Powder Technol., 361(2020), p. 226. doi: 10.1016/j.powtec.2019.08.050
      [34]
      J. Xu, N. Wang, M. Chen, Z.Y. Zhou, and P.F Wang, Evaluation of reduction behavior of blast furnace dust particles during in-flight process with experiment aided mathematical modeling, Appl. Math. Modell., 75(2019), p. 535. doi: 10.1016/j.apm.2019.05.048
      [35]
      M. Simone, E. Biagini, C. Galletti, and L. Tognotti, Evaluation of global biomass devolatilization kinetics in a drop tube reactor with CFD aided experiments, Fuel, 88(2009), No. 10, p. 1818. doi: 10.1016/j.fuel.2009.04.032
      [36]
      A.D. Gosman and E. Loannides, Aspects of computer simulation of liquid-fueled combustors, J. Energy, 7(1983), No. 6, p. 482. doi: 10.2514/3.62687
      [37]
      S.A. Morsi and A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech., 55(1972), No. 2, p. 193. doi: 10.1017/S0022112072001806
      [38]
      A. Haider and O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol., 58(1989), No. 1, p. 63. doi: 10.1016/0032-5910(89)80008-7
      [39]
      H. Ounis, G. Ahmadi, and J.B. McLaughlin, Brownian diffusion of submicrometer particles in the viscous sublayer, J. Colloid Interface Sci., 143(1991), No. 1, p. 266. doi: 10.1016/0021-9797(91)90458-K
      [40]
      Y.B. Hahn and H.Y. Sohn, Mathematical modeling of sulfide flash smelting process: Part I. Model development and verification with laboratory and pilot plant measurements for chalcopyrite concentrate smelting, Metall. Mater. Trans. B, 21(1990), No. 6, p. 945. doi: 10.1007/BF02670265
      [41]
      H.S. Chen, Z. Zheng, and W.Y. Shi, Investigation on the kinetics of iron ore fines reduction by CO in a micro-fluidized bed, Procedia Eng., 102(2015), p. 1726. doi: 10.1016/j.proeng.2015.01.308
      [42]
      H.S. Chen, Z. Zheng, Z.W. Chen, W.Z. Yu, and J.R. Yue, Multistep reduction kinetics of fine iron ore with carbon monoxide in a micro fluidized bed reaction analyzer, Metall. Mater. Trans. B, 48(2017), No. 2, p. 841. doi: 10.1007/s11663-016-0883-7
      [43]
      D.B. Guo, Y.B. Li, B.H. Cui, Z.H. Chen, S.P. Luo, B. Xiao, H.P. Zhu, and M. Hu, Direct reduction of iron ore/biomass composite pellets using simulated biomass-derived syngas: experimental analysis and kinetic modelling, Chem. Eng. J., 327(2017), p. 822. doi: 10.1016/j.cej.2017.06.118
      [44]
      E.A. Mousa and S. Ghali, Factorial design analysis of reduction of simulated iron ore sinter reduced with CO gas at 1000–1100°C, Ironmaking Steelmaking, 42(2014), No. 4, p. 311.
      [45]
      B. Abolpour, M.M. Afsahi, A. Soltani Goharrizi, and M. Azizkarimi, Simulating reduction of in-flight particles of magnetite concentrate by carbon monoxide, Ironmaking Steelmaking, 44(2017), No. 10, p. 750. doi: 10.1080/03019233.2016.1232879

    Catalog


    • /

      返回文章
      返回