留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  4218
  • HTML全文浏览量:  1569
  • PDF下载量:  61
  • 被引次数: 0
Hossein Hosseini-Tayeband Seyed Mahdi Rafiaei, Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 327-334. https://doi.org/10.1007/s12613-020-2211-0
Cite this article as:
Hossein Hosseini-Tayeband Seyed Mahdi Rafiaei, Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 327-334. https://doi.org/10.1007/s12613-020-2211-0
引用本文 PDF XML SpringerLink
研究论文

通过振动辅助激光熔覆增强沉积在 Inconel 718 上的 Stellite/WC 纳米复合材料的显微结构和力学性能

  • 通讯作者:

    Seyed Mahdi Rafiaei    E-mail: rafiaei@gut.ac.ir

  • 通过具有不同激光参数的振动辅助激光熔覆,将 Stellite-21/WC 纳米粉末沉积在 Inconel 上。 采用光学和扫描电子显微镜、硬度测量和磨损表征来了解纳米复合材料的微观结构和力学性能。 研究结果表明,改变冷却速率对包覆复合材料的微观结构产生显着影响。 此外,当激光功率从 150 W 增加到 250 W 会增加热输入和稀释度。 在 250 W 的高激光功率下,扫描速率和送粉速率会影响稀释度。当加入 WC 纳米颗粒作为增强材料时,稀释幅度加剧,同时硬度值从 HV 350 增加到 HV 700。磨损特性表明, 含有 3wt% WC 纳米颗粒的复合材料具有最高的耐磨性。

  • Research Article

    Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding

    + Author Affiliations
    • Stellite-21/WC nanopowders were deposited on Inconel through vibration-assisted laser cladding with different laser parameters. Optical and scanning electron microscopy, hardness measurements, and wear characterizations were employed to understand the microstructural and mechanical behaviors of the nanocomposites. Results showed that varying the cooling rate exerted remarkable effects on the microstructure of the as-cladded composites. Moreover, increasing the laser power from 150 W to 250 W increased the heat input and the dilutions. Dilution was affected by the scanning rate and powder feeding rate at a high laser power of 250 W. When WC nanoparticles were added as reinforcement, the dilution magnitude intensified while the hardness value increased from HV 350 to HV 700. The wear characterizations indicated that the composites containing 3wt% WC nanoparticles possessed the highest wear resistance.

    • loading
    • [1]
      Y.C. Zhang, Z.G. Li, P.L. Nie, and Y.X. Wu, Carbide and nitride precipitation during laser cladding of Inconel 718 alloy coatings, Opt. Laser Technol., 52(2013), p. 30. doi: 10.1016/j.optlastec.2013.03.023
      [2]
      C.L. Zhong, A. Gasser, J. Kittel, K. Wissenbach, and R. Poprawe, Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition, Mater. Des., 98(2016), p. 128. doi: 10.1016/j.matdes.2016.03.006
      [3]
      R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.
      [4]
      S.M. Rafiaei, J.H. Kim, and S. Kang, Effect of nitrogen and secondary carbide on the microstructure and properties of (Ti0.93W0.07)C–Ni cermets, Int. J. Refract. Met. Hard Mater., 44(2014), p. 123. doi: 10.1016/j.ijrmhm.2014.02.001
      [5]
      S.M. Rafiaei, A. Bahrami, and M. Shokouhimehr, Influence of Ni/Co binders and Mo2C on the microstructure evolution and mechanical properties of (Ti0.93W0.07)C-based cermets, Ceram. Int., 44(2018), No. 15, p. 17655. doi: 10.1016/j.ceramint.2018.06.227
      [6]
      B. Li, Y. Jin, J.H. Yao, Z.H. Li, and Q.L. Zhang, Solid-state fabrication of WCp-reinforced Stellite-6 composite coatings with supersonic laser deposition, Surf. Coat. Technol., 321(2017), p. 386. doi: 10.1016/j.surfcoat.2017.04.062
      [7]
      D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding, Opt. Laser Technol., 68(2015), p. 191. doi: 10.1016/j.optlastec.2014.12.005
      [8]
      D. Bartkowski and G. Kinal, Microstructure and wear resistance of Stellite-6/WC MMC coatings produced by laser cladding using Yb: YAG disk laser, Int. J. Refract. Met. Hard Mater., 58(2016), p. 157. doi: 10.1016/j.ijrmhm.2016.04.017
      [9]
      S. Buytoz, M. Ulutan, and M.M. Yildirim, Dry sliding wear behavior of TIG welding clad WC composite coatings, Appl. Surf. Sci., 252(2005), No. 5, p. 1313. doi: 10.1016/j.apsusc.2005.02.088
      [10]
      X.K. Deng, G.J. Zhang, T. Wang, S. Ren, Q. Cao, Z.L. Bai, and Z.N. Liu, Microstructure and wear resistance of Mo coating deposited by plasma transferred arc process, Mater. Charact., 131(2017), p. 517. doi: 10.1016/j.matchar.2017.07.044
      [11]
      M. Ashja and M.M. Verdian, Al–Cu–Fe coatings manufactured by the flame spraying process, Mater. Manuf. Process., 32(2017), No. 4, p. 383. doi: 10.1080/10426914.2016.1244853
      [12]
      H. Hosseini-Tayeb and S.M. Rafiaei, Effects of lateral and vertical ultrasonic vibrations on the microstructure and microhardness of Stellite-6 coating deposited on Inconel 718 superalloy through laser metal deposition, Mater. Res. Express, 7(2020), No. 1, art. No. 016531. doi: 10.1088/2053-1591/ab6292
      [13]
      G. Bonizzoni and E. Vassallo, Plasma physics and technology; industrial applications, Vacuum, 64(2002), No. 3-4, p. 327. doi: 10.1016/S0042-207X(01)00341-4
      [14]
      J.H. Chen, P.N. Chen, C.M. Lin, C.M. Chang, Y.Y. Chang, and W. Wu, Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW), Surf. Coat. Technol., 203(2009), No. 20-21, p. 3231. doi: 10.1016/j.surfcoat.2009.03.058
      [15]
      Q.J. Zheng and R. Vasinko, DuraStell PTA cladding for wear application, [in] S.J. Wang, M.L. Free, S. Alam, M.M. Zhang, and P.R. Taylor, eds., Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. Springer, Cham, 2017, p. 345.
      [16]
      W.T. Chen and E.C. Dickey, Crystallographic orientation relationships and interfaces in laser-processed directionally solidified WC–W2C eutectoid ceramics, J. Mater. Sci., 51(2016), No. 9, p. 4371. doi: 10.1007/s10853-016-9749-2
      [17]
      L. Santo, Laser cladding of metals: A review, Int. J. Surf. Sci. Eng., 2(2008), No. 5, art. No. 327. doi: 10.1504/IJSURFSE.2008.021345
      [18]
      E. Toyserkani, A. Khajepour, and S.F. Corbin, Laser Cladding, CRD Press, Boca Raton, 2004.
      [19]
      N. Shamsaei, A. Yadollahi, L.K. Bian, and S.M. Thompson, An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Addit. Manuf., 8(2015), p. 12. doi: 10.1016/j.addma.2015.07.002
      [20]
      S.R. More, D.V. Bhatt, and J.V. Menghani, Resent research status on laser cladding as erosion resistance technique - An overview, Mater. Today: Proc., 4(2017), No. 9, p. 9902. doi: 10.1016/j.matpr.2017.06.291
      [21]
      J. Huebner, P. Rutkowski, D. Kata, and J. Kusiński, Microstructural and mechanical study of inconel 625 – tungsten carbide composite coatings obtained by powder laser cladding, Arch. Metall. Mater., 62(2017), No. 2, p. 531. doi: 10.1515/amm-2017-0078
      [22]
      T. Kunimine, R. Miyazaki, Y. Yamashita, Y. Funada, Y. Sato, and M. Tsukamoto, Cladding of stellite-6/WC composites coatings by laser metal deposition, Mater. Sci. Forum, 941(2018), p. 1645. doi: 10.4028/www.scientific.net/MSF.941.1645
      [23]
      M.L. Zhong, K.F. Yao, W.J. Liu, J.C. Goussain, C. Mayer, and A. Becker, High-power laser cladding Stellite 6+WC with various volume rates, J. Laser Appl., 13(2001), No. 6, p. 247. doi: 10.2351/1.1418706
      [24]
      O. Yılmaz and S. Buytoz, Abrasive wear of Al2O3-reinforced aluminium-based MMCs, Compos. Sci. Technol., 61(2001), No. 16, p. 2381. doi: 10.1016/S0266-3538(01)00131-2
      [25]
      M. Karbalaei Akbari, O. Mirzaee, and H.R. Baharvandi, Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method, Mater. Des., 46(2013), p. 199. doi: 10.1016/j.matdes.2012.10.008
      [26]
      M. Mabuchi and K. Higashi, Strengthening mechanisms of Mg–Si alloys, Acta Mater., 44(1996), No. 11, p. 4611. doi: 10.1016/1359-6454(96)00072-9
      [27]
      M. Hajizamani and M. Alizadeh, Modification of microstructure and mechanical properties of Al–Zn–Mg/3 wt.% Al2O3 composite through semi-solid thermomechanical processing using variable loads, Int. J. Mater. Res., 108(2017), No. 10, p. 840. doi: 10.3139/146.111555
      [28]
      M. Hajizamani, M. Alizadeh, A. Alizadeh, and S.A. Jenabali-Jahromi, Role of melt percentage on characteristics of Al–Zn–Mg/3 wt.% Al2O3 nanostructured composite modified through semi-solid thermomechanical processing, Mater. Res. Express, 5(2018), No. 2, art. No. 026520. doi: 10.1088/2053-1591/aaabf8
      [29]
      M. Hajizamani, M. Alizadeh, A. Alizadeh, and M. Karamouz, A comparative study on characteristics of nanostructured Al–Zn–Mg/3 wt% Al2O3 composites synthesized through solid-state sintering and semi-solid thermomechanical processing, Mater. Res. Express, 6(2019), No. 6, art. No. 066520. doi: 10.1088/2053-1591/ab0ac6
      [30]
      S. Amirkhanlou, M.R. Rezaei, B. Niroumand, and M.R. Toroghinejad, Refinement of microstructure and improvement of mechanical properties of Al/Al2O3 cast composite by accumulative roll bonding process, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2548. doi: 10.1016/j.msea.2010.12.049
      [31]
      J.R. Davis, Surface Engineering for Corrosion and Wear Resistance, ASM international, Ohio, 2001.
      [32]
      G.E. Dieter and D. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986.

    Catalog


    • /

      返回文章
      返回