留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(4)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  4120
  • HTML全文浏览量:  555
  • PDF下载量:  77
  • 被引次数: 0
Jiaojiao Yi, Fuyang Cao, Mingqin Xu, Lin Yang, Lu Wang,  and Long Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1231-1236. https://doi.org/10.1007/s12613-020-2214-x
Cite this article as:
Jiaojiao Yi, Fuyang Cao, Mingqin Xu, Lin Yang, Lu Wang,  and Long Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1231-1236. https://doi.org/10.1007/s12613-020-2214-x
引用本文 PDF XML SpringerLink
研究论文

CrHfNbTaTi和CrHfMoTaTi难熔高熵合金相构成、微观结构及压缩性能

  • 通讯作者:

    杨林    E-mail: yanglin@jsut.edu.cn

文章亮点

  • (1) 基于广泛关注的HfNbTaTiZr开发出两种难熔高熵合金。
  • (2) 系统研究了元素置换对HfNbTaTiZr的相结构形成的影响。
  • (3) 通过元素置换获得的CrHfNbTaTi具有优异的强塑性结合。
  • 随着工业技术的发展,对高温金属材料的需求日益增长。2010年高温高熵合金的提出,为新型高温合金的设计开发提供了新思路,逐渐成为近年来的研究热点。本文基于广泛研究的HfNbTaTiZr高熵合金,通过元素置换设计了CrHfNbTaTi和CrHfMoTaTi难熔高熵合金,对真空电弧炉熔炼条件获得的铸态试样的相构成、微观结构以及压缩性能进行了系统研究。研究结果表明CrHfNbTaTi和CrHfMoTaTi难熔高熵合金均由BCC和Laves相构成;CrHfNbTaTi的屈服强度从HfNbTaTiZr的926 MPa提升至1258 MPa,并且保留优异的塑性(约15.0%的压缩应变)。本文通过表征与分析CrHfNbTaTi和CrHfMoTaTi难熔高熵合金因元素置换而产生的形貌和成分分布的演变,表明类网状的枝晶间形貌有利于难熔高熵合金压缩性能的提升,而由Mo元素参与形成的枝晶被枝晶间壳层松散包裹结构则降低了CrHfMoTaTi难熔高熵合金的屈服强度并增加了它的脆性。
  • Research Article

    Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi

    + Author Affiliations
    • New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.
    • loading
    • [1]
      C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, and J.W. Yeh, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, J. Alloys Compd., 624(2015), p. 100. doi: 10.1016/j.jallcom.2014.11.064
      [2]
      T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, J. Propul. Power., 22(2006), No. 2, p. 361. doi: 10.2514/1.18239
      [3]
      E. Karaköse and M. Keskin, Microstructure evolution and mechanical properties of intermetallic Ni–xSi (x = 5, 10, 15, 20) alloys, J. Alloys Compd., 528(2012), p. 63. doi: 10.1016/j.jallcom.2012.02.165
      [4]
      N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des., 81(2015), p. 87. doi: 10.1016/j.matdes.2015.05.019
      [5]
      D.B. Miracle, High entropy alloys as a bold step forward in alloy development, Nat. Commun., 10(2019), No. 1, p. 1805. doi: 10.1038/s41467-019-09700-1
      [6]
      J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [7]
      B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
      [8]
      O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758. doi: 10.1016/j.intermet.2010.05.014
      [9]
      O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
      [10]
      O.N. Senkov, A.L. Pilchak, and S.L. Semiatin, Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy, Metall. Mater. Trans. A., 49(2018), No. 7, p. 2876. doi: 10.1007/s11661-018-4646-8
      [11]
      R.R. Eleti, T. Bhattacharjee, A. Shibata, and N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta. Mater., 171(2019), p. 132. doi: 10.1016/j.actamat.2019.04.018
      [12]
      U. Bhandari, C.Y. Zhang, S.M. Guo, and S.Z. Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1398. doi: 10.1007/s12613-020-2077-1
      [13]
      Q.W. Xing, J. Ma, and Y. Zhang, Phase thermal stability and mechanical properties analyses of (Cr,Fe,V)–(Ta,W) multiplebased elemental system using a compositional gradient film, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1379. doi: 10.1007/s12613-020-2063-7
      [14]
      T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318. doi: 10.1007/s12613-020-2040-1
      [15]
      S.Y. Chen, K.K. Tseng, Y. Tong, W.D. Li, C.W. Tsai, J.W. Yeh, and P.K. Liaw, Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy, J. Alloys Compd., 795(2019), p. 19. doi: 10.1016/j.jallcom.2019.04.291
      [16]
      O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta. Mater., 68(2014), p. 214. doi: 10.1016/j.actamat.2014.01.029
      [17]
      É. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F.Y. Tian, and L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater., 47(2014), p. 131. doi: 10.1016/j.ijrmhm.2014.07.009
      [18]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
      [19]
      O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509(2011), No. 20, p. 6043. doi: 10.1016/j.jallcom.2011.02.171
      [20]
      A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279. doi: 10.1016/S1359-6454(99)00300-6
      [21]
      O.N. Senkov and C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A, 529(2011), p. 311. doi: 10.1016/j.msea.2011.09.033
      [22]
      J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of trip steels, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4516. doi: 10.1016/j.msea.2011.02.032
      [23]
      S. Liu, Z. Xiong, H. Guo, C. Shang, and R.D.K. Misra, The significance of multi-step partitioning: Processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels, Acta Mater., 124(2017), p. 159. doi: 10.1016/j.actamat.2016.10.067
      [24]
      O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A, 565(2013), p. 51. doi: 10.1016/j.msea.2012.12.018
      [25]
      C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics, 62(2015), p. 76. doi: 10.1016/j.intermet.2015.03.013
      [26]
      S. Chen, X. Yang, K. Dahmen, P. Liaw, and Y. Zhang, Microstructures and crackling noise of AlxNbTiMoV high entropy alloys, Entropy, 16(2014), No. 2, p. 870. doi: 10.3390/e16020870

    Catalog


    • /

      返回文章
      返回