留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(11)

数据统计

分享

计量
  • 文章访问数:  1278
  • HTML全文浏览量:  351
  • PDF下载量:  23
  • 被引次数: 0
Sheng Liu, Qing Yuan, Yutong Sima, Chenxi Liu, Fang Han, and Wenwei Qiao, Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1270-1279. https://doi.org/10.1007/s12613-020-2217-7
Cite this article as:
Sheng Liu, Qing Yuan, Yutong Sima, Chenxi Liu, Fang Han, and Wenwei Qiao, Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1270-1279. https://doi.org/10.1007/s12613-020-2217-7
引用本文 PDF XML SpringerLink
研究论文

Zn–38Al–3.5Cu–1.2Mg/SiCp复合材料稳定化处理下的磨损行为

  • 通讯作者:

    袁清    E-mail: yuanqing@wust.edu.cn

文章亮点

  • (1) 系统地研究了固溶和时效处理对Zn–38Al–3.5Cu–1.2Mg/SiCp复合材料耐磨性的影响规律。
  • (2) 采用搅拌联合超声处理的铸造方法制备耐磨性能优异的纳米Zn–38Al–3.5Cu–1.2Mg/SiCp复合材料并研究了其中的耐磨机理。
  • (3) 总结并提出了耐磨性能优异的Zn–38Al–3.5Cu–1.2Mg/SiCp复合材料的微观组织特征。
  • 高铝锌合金由于其高温耐磨性较差而受限于各种重型传动领域的使用,碳化硅增强体的加入有效改善了当前的困境。然而以高铝锌合金为基体的复合材料仍然有明显的时效缺陷,且随着重载长程传动的持续而引起摩擦温度剧增,复合材料摩擦表面微观组织中固溶体的溶解度增大,耐磨α相和减摩η相均向软基β相转换引起了微观结构的不稳定,从而导致摩擦工况中复合材料使用性能的不稳定。本文采用搅拌联合熔体超声工艺制备了纳米Zn–38Al–3.5Cu–1.2Mg/SiCp复合材料试样,研究了不同稳定化处理下复合材料的干摩擦磨损行为,分析了磨损性能与磨损量、磨损表面形貌、纳米增强体的分散性以及复合材料微观组织结构的关系。研究结果表明,稳定化的复合材料内部的纳米SiCp分布更加均匀,经稳定化处理后的复合材料的显微硬度随着接触表面温度的升高而在增大,未经过稳定化处理的复合材料显微硬度随着接触表面温度升高基本不变,并且稳定化工艺最优为380℃ × 6 h + 170℃ × 48 h。稳定化处理有利于复合材料中纳米增强体颗粒的分散,不仅细化了晶粒大小还增强了耐磨性,同时由于纳米SiCp的高温热稳定性还进一步抑制了在磨损时复合材料微观结构中硬质相向软质相的转变过程,同时稳定化处理也有利于缓解纳米SiCp在基体界面处所引起的裂纹源。
  • Research Article

    Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments

    + Author Affiliations
    • A Zn–38Al–3.5Cu–1.2Mg composite reinforced with nano-SiCp was fabricated via stirring-assisted ultrasonic vibration. To improve the abrasive resistance of the Zn–38Al–3.5Cu–1.2Mg/SiCp composite, several stabilization treatments with distinct solid solutions and aging temperatures were designed. The results indicated that the optimal stabilization treatment for the Zn–38Al–3.5Cu–1.2Mg/SiCp composite comprised solution treatment at 380°C for 6 h and aging at 170°C for 48 h. The stabilization treatment led to the formation of dispersive and homogeneous nano-SiCp. During the friction wear condition, the nano-SiCp limited the microstructure evolution from the hard α(Al,Zn) phase to the soft β(Al,Zn) phase. Moreover, the increased amount of nano-SiCp improved the grain dimension and contributed to the composite abrasive resistance. Furthermore, the stabilization treatment suppressed the crack initiation and propagation in the friction wear process, thereby improving the abrasive resistance of the Zn–38Al–3.5Cu–1.2Mg/SiCp composite.
    • loading
    • [1]
      Z. Azakli and T. Savaşkan, An examination of friction and sliding wear properties of Zn−40Al−2Cu−2Si alloy in case of oil cut off, Tribol. Int., 41(2008), 1, p. 9. doi: 10.1016/j.triboint.2007.04.002
      [2]
      S. Temel, A.M. Reza, and O.T. Hasan, Tribological properties of Zn−25Al−3Cu−1Si alloy, Tribol. Int., 81(2015), p. 105. doi: 10.1016/j.triboint.2014.08.014
      [3]
      T. Liu, N.C. Si, G.L. Liu, R. Zhang, and C.Y. Qi, Effects of Si addition on microstructure, mechanical and thermal fatigue properties of Zn−38Al−2.5Cu alloys, Trans. Nonferrous Met. Soc. China, 26(2016), No. 7, p. 1775. doi: 10.1016/S1003-6326(16)64290-5
      [4]
      S. Liu, Q. Yuan, Y.Q. Gong, G. Xu, and W.W. Qiao, Relationship between microstructure and dry wear behavior of compo-cast nano-SiC(p)+micro-Gr(p)/Zn−35Al−1.2Mg−0.2Sr composite under different chilling conditions, Kovove Mater., 58(2020), No. 1, p. 1. doi: 10.4149/km_2020_1_1
      [5]
      S.K. Mishra, S. Biswas, and A. Satapathy, A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites, Mater. Des., 55(2014), p. 958. doi: 10.1016/j.matdes.2013.10.069
      [6]
      B. Biljana, B. Jelena, B. Ilija, and J. Bore, Corrosion influence on surface appearance and microstructure of compo cast ZA27/SiCp composites in sodium chloride solution, Trans. Nonferrous Met. Soc. China, 26(2016), No. 6, p. 1512. doi: 10.1016/S1003-6326(16)64257-7
      [7]
      S. Liu, Q. Yuan, Y.Q. Gong, Y.L. Zhou, L.X. Li, and G. Xu, Correlations between microstructure and dry friction wear behavior of Zn−38Al−3.5Cu−1.2 Mg alloy reinforced with SiC nanoparticles, Trans. Indian Inst. Met., 72(2019), No. 10, p. 2557. doi: 10.1007/s12666-019-01725-w
      [8]
      H.A. Deore, J. Mishra, A.G. Rao, H.V. Mehtani, and D. Hiwarkar, Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites, Surf. Coat. Technol., 374(2019), p. 52. doi: 10.1016/j.surfcoat.2019.05.048
      [9]
      L. Chen, S.W. Yuan, D.M. Kong, G.Q. Zhao, Y.Y. He, and C.S. Zhang, Influence of aging treatment on themicrostructure, mechanical properties and anisotropy of hot extruded Al−Mg−Si plate, Mater. Des., 182(2019), art. No. 107999. doi: 10.1016/j.matdes.2019.107999
      [10]
      M.B. Seyedeh, J.A. Hamed, and J. Roohollah, Effect of non-isothermal aging on microstructure and mechanical properties of friction surfaced AA5083–15wt%Zn composites, Surf. Coat. Technol., 384(2020), art. No. 125307. doi: 10.1016/j.surfcoat.2019.125307
      [11]
      P. Liu, L.L. Hu, Q.H. Zhang, C.P. Yang, Z.S. Yu, J.Q. Zhang, J.M. Hu, and F.H. Cao, Effect of aging treatment on microstructure and corrosion behavior of Al−Zn−Mg aluminum alloy in aqueous solutions with different aggressive ions, J. Mater. Sci. Technol., 64(2019), p. 85. doi: 10.1016/j.jmst.2019.09.030
      [12]
      Y.C. Chiu, K.T. Du, H.Y. Bor, G.H. Liu, and S.L. Lee, The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al−Zn−Mg−Cu alloys, Mater. Chem. Phys., 247(2020), art. No. 122853. doi: 10.1016/j.matchemphys.2020.122853
      [13]
      Z.Q. Zhang, J.H. Yu, and D.Y. He, Effect of contact solid solution process on peak aging of Al−Zn−Mg−Cu alloys, J. Mater. Res. Technol., 9(2020), No. 3, p. 6940. doi: 10.1016/j.jmrt.2020.02.074
      [14]
      J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and Re-aged Al−Zn−Mg−Cu alloy, J. Alloys Compd., 829(2020), art. No. 154469. doi: 10.1016/j.jallcom.2020.154469
      [15]
      X.W. Li, Q.Z. Cai, B.Y. Zhao, B. Liu, and W.W. Li, Precipitation behaviors and properties of solution-aging Al−Zn−Mg−Cu alloy refined with TiN nanoparticles, J. Alloys Compd., 746(2018), p. 462. doi: 10.1016/j.jallcom.2018.02.271
      [16]
      H.B. Zhang, B. Wang, Y.T. Zhang, Y. Li, J.L. He, and Y.F. Zhang, Influence of aging treatment on the microstructure and mechanical properties of CNTs/7075 Al composites, J. Alloys Compd., 814(2020), art. No. 152357. doi: 10.1016/j.jallcom.2019.152357
      [17]
      W.H. Yuan and B.L. An, Effect of heat treatment on microstructure and mechanical property of extruded 7090/SiCp composite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 2080. doi: 10.1016/S1003-6326(11)61431-3
      [18]
      G.N. Ma, D. Wang, Z.Y. Liu, B.L. Xiao, and Z.Y. Ma, An investigation on particle weakening in T6-treated SiC/Al−Zn−Mg−Cu composites, Mater. Charact., 158(2019), art. No. 109966. doi: 10.1016/j.matchar.2019.109966
      [19]
      W. L. Zhang, X. Ma, and D.Y. Ding, Aging behavior and tensile response of a SiC reinforced eutectoid zinc−aluminium−copper alloy matrix composite, J. Alloys Compd., 727(2017), p. 375. doi: 10.1016/j.jallcom.2017.08.130
      [20]
      Q. Yuan, G. Xu, S. Liu, M. Liu, H.J. Hu, and G.Q. Li, Effect of rolling reduction on microstructure and property of ultrafine grained low-carbon steel processed by cryorolling martensite, Metals, 8(2018), No. 7, p. 518. doi: 10.3390/met8070518
      [21]
      Q. Yuan, G. Xu, M. Liu, H.J. Hu, and J.Y. Tian, Effects of rolling temperature on the microstructure and mechanical properties in an ultrafine-grained low-carbon steel, Steel Res. Int., 90(2019), art. No. 1800318. doi: 10.1002/srin.201800318
      [22]
      Q. Yuan, G. Xu, J.Y. Tian, and W.C. Liang, The recrystallization behavior in ultrafine-grained structure steel fabricated by cold rolling and annealing, Arab. J. Sci. Eng., 42(2017), No. 11, p. 4771. doi: 10.1007/s13369-017-2633-9
      [23]
      Q. Yuan, G. Xu, M. Liu, S. Liu, and H.J. Hu, Evaluation of mechanical properties and microstructures of ultrafine grain low-carbon steel processed by cryorolling and annealing, Trans. Indian Inst. Met., 72(2019), No. 3, p. 741. doi: 10.1007/s12666-018-1526-2
      [24]
      Q. Yuan, G. Xu, S. Liu, M. Liu, and H.J. Hu, Effects of strain rate on the microstructure of ultrafine grained medium-carbon steel, Arch. Metall. Mater., 63(2018), No. 4, p. 1805. doi: 10.24425/amm.2018.125108
      [25]
      X.L. Gan, Q. Yuan, G. Zhao, H.J. Hu, J.Y. Tian, and G. Xu, Investigating the properties of coil tail in Ti–Nb–Mo microalloyed hot-rolled strip, Steel Res. Int., 90(2019), art. No. 1900040. doi: 10.1002/srin.201900040
      [26]
      X.L. Gan, Q. Yuan, G. Zhao, H.W. Ma, W. Liang, Z.L. Xue, W.W. Qiao, and G. Xu, Quantitative analysis of microstructures and strength of Nb–Ti microalloyed steel with different Ti additions, Metall. Mater. Trans. A., 51(2020), p. 2084. doi: 10.1007/s11661-020-05700-9
      [27]
      W. Liang, Q. Yuan, G.H. Chen, M. Liu, and W.W. Qiao, Fracture evolution in ferrite/martensite dual phase flange steel, Ironmaking Steelmaking, 48(2021), No. 1, p. 88. doi: 10.1080/03019233.2020.1733779
      [28]
      M. Taya and R.J. Arsenault, A comparison between a shear lag type and eshelby type model in predicting the mechanical properties of a short fiber composite, Scripta Metall., 21(1987), No. 3, p. 349. doi: 10.1016/0036-9748(87)90227-4
      [29]
      V.C. Nardone and K.M. Prewo, On the strength of discontinuous silicon carbide reinfirced aluminum composites, Script. Metall., 20(1986), No. 1, p. 43. doi: 10.1016/0036-9748(86)90210-3
      [30]
      R. Zare, H. Sharifi, and M.R. Saeri, Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite, J. Alloys Compd., 801(2019), p. 520. doi: 10.1016/j.jallcom.2019.05.317

    Catalog


    • /

      返回文章
      返回