留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(10)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1361
  • HTML全文浏览量:  369
  • PDF下载量:  63
  • 被引次数: 0
Junjie Zhang, Xiaoyan Zhang, Bo Liu, Christian Ekberg, Shizhen Zhao, and Shengen Zhang, Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 563-573. https://doi.org/10.1007/s12613-020-2219-5
Cite this article as:
Junjie Zhang, Xiaoyan Zhang, Bo Liu, Christian Ekberg, Shizhen Zhao, and Shengen Zhang, Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 563-573. https://doi.org/10.1007/s12613-020-2219-5
引用本文 PDF XML SpringerLink
研究论文

底灰、粉煤灰及酸洗污泥协同制备泡沫微晶玻璃的相变及性能研究

  • 通讯作者:

    张笑妍    E-mail: xiaoyanzhang666@163.com

    刘波    E-mail: liubo@ustb.edu.cn

    张深根    E-mail: zhangshengen@mater.ustb.edu.cn

文章亮点

  • (1) 以底灰、粉煤灰和酸洗污泥为原料制备了具有均匀孔结构的泡沫微晶玻璃。
  • (2) 研究了底灰掺量对孔结构、物理性能、相组成、孔内析晶的影响规律。
  • (3) 系统地研究了硅氧骨架连接程度与孔结构间作用机制。
  • 底灰、粉煤灰和酸洗污泥给城市带来了严重的环境污染,以其为原料制备泡沫微晶玻璃是实现固体废物资源化利用,降低环境影响的有效途径。本文以碳酸钙为发泡剂协同处置以上三种固体废弃物,成功制备了泡沫微晶玻璃。不同底灰添加量对样品的孔形态、孔径分布、孔内外成分变化、物理性能、玻璃结构单元、物相及析晶的影响得到了分析。结果表明,随底灰添加量增加,玻璃相,Si–O–Si及Q3Si单元逐渐减少,玻璃转变温度降低,从而造成气泡融合及孔分布不均的现象。当底灰、粉煤灰、酸洗污泥添加量分别35wt%,45wt%和20wt%时,制备了具有均匀球形孔隙和优异物理性能的泡沫微晶玻璃。样品的体积密度为1.76 g/cm3,孔隙率达56.01%,抗压强度为16.23 MPa。这种低成本制备泡沫微晶玻璃的方法为协同处置固体废弃物提供了新思路。

  • Research Article

    Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge

    + Author Affiliations
    • Municipal solid waste incineration products of bottom ash (BA), fly ash (FA), and pickling sludge (PS), causing severe environmental pollution, were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering. The effect of the BA/FA mass ratio on the phase composition, pore morphology, pore size distribution, physical properties, and glass structure was investigated, with results showing that with the increase in the BA/FA ratio, the content of the glass phase, Si–O–Si, and Q3Si units decrease gradually. The glass transmission temperature of the mixture was also reduced. When combined, the glass viscosity decreases, causing bubble coalescence and uneven pore distribution. Glass ceramic foams with uniform spherical pores are fabricated. When the content of BA, FA, and PS are 35wt%, 45wt%, and 20wt%, respectively, contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3, porosity of 56.01%, and compressive strength exceeding 16.23 MPa. This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.

    • loading
    • [1]
      H. Wang, Z.W. Chen, R. Ji, L.L. Liu, and X.D. Wang, Integrated utilization of high alumina fly ash for synthesis of foam glass ceramic, Ceram. Int., 44(2018), No. 12, p. 13681. doi: 10.1016/j.ceramint.2018.04.207
      [2]
      S. Das, S.H. Lee, P. Kumar, K.H. Kim, S.S. Lee, and S.S. Bhattacharya, Solid waste management: Scope and the challenge of sustainability, J. Clean. Prod., 228(2019), p. 658. doi: 10.1016/j.jclepro.2019.04.323
      [3]
      C. Mugoni, M. Montorsi, C. Siligardi, F. Andreola, I. Lancellotti, E. Bernardo, and L. Barbieri, Design of glass foams with low environmental impact, Ceram. Int., 41(2015), No. 3, p. 3400. doi: 10.1016/j.ceramint.2014.10.127
      [4]
      M.G. Zhu, R. Ji, Z.M. Li, H. Wang, L.L. Liu, and Z.T. Zhang, Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass, Constr. Build. Mater., 112(2016), p. 398. doi: 10.1016/j.conbuildmat.2016.02.183
      [5]
      R. Ji, Z.T. Zhang, Y. He, L.L. Liu, and X.D. Wang, Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue, Constr. Build. Mater., 85(2015), p. 119. doi: 10.1016/j.conbuildmat.2015.03.089
      [6]
      E. Bernardo, R. Cedro, M. Florean, and S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams, Ceram. Int., 33(2007), No. 6, p. 963. doi: 10.1016/j.ceramint.2006.02.010
      [7]
      M.T. Souza, B.G.O. Maia, L.B. Teixeira, K.G. de Oliveira, A.H.B. Teixeira, and A.P. Novaes de Oliveira, Glass foams produced from glass bottles and eggshell wastes, Process. Saf. Environ. Prot., 111(2017), p. 60. doi: 10.1016/j.psep.2017.06.011
      [8]
      E. Sharifikolouei, F. Baino, C. Galletti, D. Fino, and M. Ferraris, Adsorption of Pb and Cd in rice husk and their immobilization in porous glass-ceramic structures, Int. J. Appl. Ceram. Technol., 17(2020), No. 1, p. 105. doi: 10.1111/ijac.13356
      [9]
      C.P. Xi, F. Zheng, J.H. Xu, W.G. Yang, Y.Q. Peng, Y. Li, P. Li, Q. Zhen, S. Bashir, and J.L. Liu, Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials, Constr. Build. Mater., 190(2018), p. 896. doi: 10.1016/j.conbuildmat.2018.09.170
      [10]
      T.Y. Liu, C.W. Lin, J.L. Liu, L. Han, H. Gui, C. Li, X. Zhou, H. Tang, Q.F. Yang, and A.X. Lu, Phase evolution, pore morphology and microstructure of glass ceramic foams derived from tailings wastes, Ceram. Int., 44(2018), No. 12, p. 14393. doi: 10.1016/j.ceramint.2018.05.049
      [11]
      F. Baino and M. Ferraris, Production and characterization of ceramic foams derived from vitrified bottom ashes, Mater. Lett., 236(2019), p. 281. doi: 10.1016/j.matlet.2018.10.122
      [12]
      P. Stabile, M. Bello, M. Petrelli, E. Paris, and M.R. Carroll, Vitrification treatment of municipal solid waste bottom ash, Waste Manage., 95(2019), p. 250. doi: 10.1016/j.wasman.2019.06.021
      [13]
      A. Vaitkus, J. Gražulytė, O. Šernas, V. Vorobjovas, and R. Kleizienė, An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers, Constr. Build. Mater., 212(2019), p. 456. doi: 10.1016/j.conbuildmat.2019.04.014
      [14]
      G. Flesoura, B. Garcia-Banos, J.M. Catala-Civera, J. Vleugels, and Y. Pontikes, In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash, Ceram. Int., 45(2019), No. 15, p. 18751. doi: 10.1016/j.ceramint.2019.06.101
      [15]
      Y.W. Xing, F.Y. Guo, M.D. Xu, X.H. Gui, H.S. Li, G.S. Li, Y.C. Xia, and H.S. Han, Separation of unburned carbon from coal fly ash: A review, Powder Technol., 353(2019), p. 372. doi: 10.1016/j.powtec.2019.05.037
      [16]
      J. Yang, S.G. Zhang, D.A. Pan, B. Liu, C.L. Wu, and A.A. Volinsky, Treatment method of hazardous pickling sludge by reusing as glass–ceramics nucleation agent, Rare Met., 35(2016), No. 3, p. 269. doi: 10.1007/s12598-015-0673-4
      [17]
      M.S. Cilla, M.D. de Mello Innocentini, M.R. Morelli, and P. Colombo, Geopolymer foams obtained by the saponification/peroxide/gelcasting combined route using different soap foam precursors, J. Am. Ceram. Soc., 100(2017), No. 8, p. 3440. doi: 10.1111/jace.14902
      [18]
      X.Y. Zhang, N. Li, T. Lan, Y.J. Lu, K. Gan, J.M. Wu, W.L. Huo, J. Xu, and J.L. Yang, In-situ reaction synthesis of porous Si2N2O–Si3N4 multiphase ceramics with low dielectric constant via silica poly-hollow microspheres, Ceram. Int., 43(2017), No. 5, p. 4235. doi: 10.1016/j.ceramint.2016.12.058
      [19]
      T.Y. Liu, J.S. Zhang, J.Q. Wu, J.L. Liu, C. Li, T.X. Ning, Z.W. Luo, X. Zhou, Q.F. Yang, and A.X. Lu, The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength, J. Clean. Prod., 223(2019), p. 790. doi: 10.1016/j.jclepro.2019.03.162
      [20]
      M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, and Z.A. Wahab, Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique, J. Mater. Sci. Mater. Electron., 26(2015), No. 6, p. 3722. doi: 10.1007/s10854-015-2891-9
      [21]
      R.D. Jia, L.B. Deng, F. Yun, H. Li, X.F. Zhang, and X.L. Jia, Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics, Mater. Chem. Phys., 233(2019), p. 155. doi: 10.1016/j.matchemphys.2019.05.065
      [22]
      H. Elsayed, A.R. Romero, M. Picicco, J. Kraxner, D. Galusek, P. Colombo, and E. Bernardo, Glass-ceramic foams and reticulated scaffolds by sinter-crystallization of a hardystonite glass, J. Non Cryst. Solids, 528(2020), art. No. 119744.
      [23]
      S.F. Zhang, X. Zhang, W. Liu, X. Lv, C.G. Bai, and L. Wang, Relationship between structure and viscosity of CaO–SiO2–Al2O3–MgO–TiO2 slag, J. Non Cryst. Solids, 402(2014), p. 214. doi: 10.1016/j.jnoncrysol.2014.06.006
      [24]
      L. Han, J. Song, C.W. Lin, J.L. Liu, T.Y. Liu, Q. Zhang, Z.W. Luo, and A.X. Lu, Crystallization, structure and properties of MgO–Al2O3–SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents, J. Eur. Ceram. Soc., 38(2018), No. 13, p. 4533. doi: 10.1016/j.jeurceramsoc.2018.05.025
      [25]
      E.M.A. Khalil, F.H. ElBatal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, and A.M. Abdelghany, Infrared absorption spectra of transition metals-doped soda lime silica glasses, Physica B,, 405(2010), No. 5, p. 1294.
      [26]
      Y.M. Lai, Y.M. Zeng, X.L. Tang, H.W. Zhang, J. Han, and H. Su, Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy, RSC Adv., 6(2016), No. 96, p. 93722. doi: 10.1039/C6RA20969F
      [27]
      H. Gui, C. Li, C.W. Lin, Q. Zhang, Z.W. Luo, L. Han, J.L. Liu, T.Y. Liu, and A.X. Lu, Glass forming, crystallization, and physical properties of MgO–Al2O3–SiO2–B2O3 glass-ceramics modified by ZnO replacing MgO, J. Eur. Ceram. Soc., 39(2019), No. 4, p. 1397. doi: 10.1016/j.jeurceramsoc.2018.10.002
      [28]
      L. Han, J. Song, Q. Zhang, Z.W. Luo, and A.X. Lu, Crystallization, structure and characterization of MgO–Al2O3–SiO2–P2O5 transparent glass-ceramics with high crystallinity, J. Non Cryst. Solids, 481(2018), p. 123. doi: 10.1016/j.jnoncrysol.2017.10.028
      [29]
      H. Yamada, S. Sukenaga, K. Ohara, C. Anand, M. Ando, H. Shibata, T. Okubo, and T. Wakihara, Comparative study of aluminosilicate glass and zeolite precursors in terms of Na environment and network structure, Microporous Mesoporous Mater., 271(2018), p. 33. doi: 10.1016/j.micromeso.2018.05.006
      [30]
      D. Manara, A. Grandjean, and D.R. Neuville, Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study, Am. Mineral., 94(2009), No. 5-6, p. 777. doi: 10.2138/am.2009.3027
      [31]
      S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283. doi: 10.1016/j.jeurceramsoc.2019.05.060

    Catalog


    • /

      返回文章
      返回