Cite this article as: |
Bo-ren Ke, Yu-chen Sun, Yong Zhang, Wen-rui Wang, Wei-min Wang, Pei-yan Ma, Wei Ji, and Zheng-yi Fu, Powder metallurgy of high-entropy alloys and related composites: A short review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 931-943. https://doi.org/10.1007/s12613-020-2221-y |
High-entropy alloys (HEAs) have attracted increasing attention because of their unique properties, including high strength, hardness, chemical stability, and good wear resistance. Powder metallurgy is one of the most important methods used to fabricate HEA materials. This paper introduces the methods used to synthesize HEA powders and consolidate HEA bulk. The phase transformation, microstructural evolution, and mechanical properties of HEAs obtained by powder metallurgy are summarized. We also address HEA-related materials such as ceramic–HEA cermets and HEA-based composites fabricated by powder metallurgy.
[1] |
J.W. Yeh, Recent progress in high-entropy alloys, Eur. J. Control, 31(2006), No. 6, p. 633.
|
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[3] |
F. Otto, Y. Yang, H. Bei, and E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater., 61(2013), No. 7, p. 2628. doi: 10.1016/j.actamat.2013.01.042
|
[4] |
A.J. Zaddach, R.O. Scattergood, and C.C. Koch, Tensile properties of low-stacking fault energy high-entropy alloys, Mater. Sci. Eng. A, 636(2015), p. 373. doi: 10.1016/j.msea.2015.03.109
|
[5] |
M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater., 60(2012), No. 16, p. 5723. doi: 10.1016/j.actamat.2012.06.046
|
[6] |
K.M. Youssef, A.J. Zaddach, C.N. Niu, D.L. Irving, and C.C. Koch, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3(2015), No. 2, p. 95. doi: 10.1080/21663831.2014.985855
|
[7] |
C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, and Y.X. Tong, Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy, Electrochim. Acta, 53(2008), No. 28, p. 8359. doi: 10.1016/j.electacta.2008.06.036
|
[8] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
|
[9] |
F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys, Phys. Rev. Lett., 116(2016), No. 13, art. No. 135504. doi: 10.1103/PhysRevLett.116.135504
|
[10] |
J.P. Liu, X.X. Guo, Q.Y. Lin, Z.B. He, X.H. An, L.F. Li, P.K. Liaw, X.Z. Liao, L.P. Yu, J.P. Lin, L. Xie, J.L. Ren, and Y. Zhang, Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures, Sci. China Mater., 62(2019), No. 6, p. 853. doi: 10.1007/s40843-018-9373-y
|
[11] |
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Mater. Sci. Eng. A, 508(2009), No. 1-2, p. 214. doi: 10.1016/j.msea.2008.12.053
|
[12] |
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy, J. Alloys Compd., 502(2010), No. 2, p. 295. doi: 10.1016/j.jallcom.2009.11.104
|
[13] |
K.B. Zhang and Z.Y. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics, 22(2012), p. 24. doi: 10.1016/j.intermet.2011.10.010
|
[14] |
K.B. Zhang and Z.Y. Fu, Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys, Intermetallics, 28(2012), p. 34. doi: 10.1016/j.intermet.2012.03.059
|
[15] |
M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer, Cham, 2016.
|
[16] |
R.M. German, Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, New Jersey, Princeton, 1994.
|
[17] |
H.H. Hausner, Modern Developments in Powder Metallurgy, Springer, Boston, 1966.
|
[18] |
P.Y. Ma, S.C. Zhang, M.T. Zhang, J.F. Gu, L. Zhang, Y.C. Sun, W. Ji, and Z.Y. Fu, Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction, Sci. China Mater., 63(2020), No. 12, p. 2613. doi: 10.1007/s40843-020-1461-2
|
[19] |
P.Y. Ma, M.M. Zhao, L. Zhang, H. Wang, J.F. Gu, Y.C. Sun, W. Ji, and Z.Y. Fu, Self-supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition, J. Materiomics, 6(2020), No. 4, p. 736. doi: 10.1016/j.jmat.2020.06.001
|
[20] |
M. Vaidya, G.M. Muralikrishna, and B.S. Murty, High-entropy alloys by mechanical alloying: A review, J. Mater. Res., 34(2019), No. 5, p. 664. doi: 10.1557/jmr.2019.37
|
[21] |
P.A. Kumar and C.S. Perugu, Synthesis of FeCrVNbMn high entropy alloy by mechanical alloying and study of their microstructure and mechanical properties, [in] The Minerals, Metals & Materials Society, ed., TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, Phoenix, Arizona, 2018, p. 669.
|
[22] |
C. Suryanarayana and F.H. Froes, Nanocrystalline titanium–magnesium alloys through mechanical alloying, J. Mater. Res., 5(1990), No. 9, p. 1880. doi: 10.1557/JMR.1990.1880
|
[23] |
S. Varalakshmi, M. Kamaraj, and B.S. Murty, Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying, J. Alloys Compd., 460(2008), No. 1-2, p. 253. doi: 10.1016/j.jallcom.2007.05.104
|
[24] |
S. Varalakshmi, M. Kamaraj, and B.S. Murty, Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying, Mater. Sci. Eng. A, 527(2010), No. 4-5, p. 1027. doi: 10.1016/j.msea.2009.09.019
|
[25] |
Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kao, J.W. Yeh, T.S. Chin, and S.K. Chen, Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying, J. Alloys Compd., 477(2009), No. 1-2, p. 696. doi: 10.1016/j.jallcom.2008.10.111
|
[26] |
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying, J. Alloys Compd., 485(2009), No. 1-2, p. L31. doi: 10.1016/j.jallcom.2009.05.144
|
[27] |
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd., 495(2010), No. 1, p. 33. doi: 10.1016/j.jallcom.2009.12.010
|
[28] |
W. Ji, Z.Y. Fu, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, and F. Zhang, Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy, J. Alloys Compd., 589(2014), p. 61. doi: 10.1016/j.jallcom.2013.11.146
|
[29] |
W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, and Z.Y. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 56(2015), p. 24. doi: 10.1016/j.intermet.2014.08.008
|
[30] |
C. Wang, W. Ji, and Z.Y. Fu, Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy, Adv. Powder Technol., 25(2014), No. 4, p. 1334. doi: 10.1016/j.apt.2014.03.014
|
[31] |
Y.C. Sun, B.R. Ke, Y.L. Li, K. Yang, M.Q. Yang, W. Ji, and Z.Y. Fu, Phases, microstructures and mechanical properties of CoCrNiCuZn high-entropy alloy prepared by mechanical alloying and spark plasma sintering, Entropy, 21(2019), No. 2, art. No. 122. doi: 10.3390/e21020122
|
[32] |
B. Niu, W. Ji, N. Li, F. Zhang, and Y. Wu, Alloying and thermal behaviour of CoCrFeNiMn0.5Ti0.5 high-entropy alloy synthesised by mechanical alloying, Mater. Sci. Technol., 32(2016), No. 1, p. 94. doi: 10.1179/1743284715Y.0000000124
|
[33] |
S. Das and P.S. Robi, Mechanical alloying of W–Mo–V–Cr–Ta high entropy alloys, IOP Conf. Ser.: Mater. Sci. Eng., 346(2018), art. No. 012047. doi: 10.1088/1757-899X/346/1/012047
|
[34] |
J.Y. Pan, T. Dai, T. Lu, X.Y. Ni, J.W. Dai, and M. Li, Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 738(2018), p. 362. doi: 10.1016/j.msea.2018.09.089
|
[35] |
J.H. Yan, M.J. Li, K.L. Li, J.W. Qiu, and Y.J. Guo, Effects of Cr content on microstructure and mechanical properties of WMoNbTiCr high-entropy alloys, J. Mater. Eng. Perform., 29(2020), No. 4, p. 2125. doi: 10.1007/s11665-020-04744-7
|
[36] |
P.P. Ding, A.Q. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, and X.L. Gu, Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method, J. Alloys Compd., 721(2017), p. 609. doi: 10.1016/j.jallcom.2017.06.020
|
[37] |
C.C. Yang, J.L.H. Chau, C.J. Weng, C.S. Chen, and Y.H. Chou, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process, Mater. Chem. Phys., 202(2017), p. 151. doi: 10.1016/j.matchemphys.2017.09.014
|
[38] |
Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A.M. Nie, T.C. Pu, M. Rehwoldt, D.W. Yu, M.R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, and L.B. Hu, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science, 359(2018), No. 6383, p. 1489. doi: 10.1126/science.aan5412
|
[39] |
B. Niu, F. Zhang, H. Ping, N. Li, J.Y. Zhou, L.W. Lei, J.J. Xie, J.Y. Zhang, W.M. Wang, and Z.Y. Fu, Sol–gel autocombustion synthesis of nanocrystalline high-entropy alloys, Sci. Rep., 7(2017), No. 1, art. No. 3421. doi: 10.1038/s41598-017-03644-6
|
[40] |
A.J. Zhang, J.S. Han, J.H. Meng, B. Su, and P.D. Li, Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture, Mater. Lett., 181(2016), p. 82. doi: 10.1016/j.matlet.2016.06.014
|
[41] |
W.P. Chen, Z.Q. Fu, S.C. Fang, H.Q. Xiao, and D.Z. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Design, 51(2013), p. 854. doi: 10.1016/j.matdes.2013.04.061
|
[42] |
S.C. Fang, W.P. Chen, and Z.Q. Fu, Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering, Mater. Des., 54(2014), p. 973. doi: 10.1016/j.matdes.2013.08.099
|
[43] |
L.H. Liu, C. Yang, Y.G. Yao, F. Wang, W.W. Zhang, Y. Long, and Y.Y. Li, Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process, Intermetallics, 66(2015), p. 1. doi: 10.1016/j.intermet.2015.06.010
|
[44] |
C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang, and E.J. Lavernia, Influence of powder properties on densification mechanism during spark plasma sintering, Scripta Mater., 139(2017), p. 96. doi: 10.1016/j.scriptamat.2017.06.034
|
[45] |
X.X. Li, C. Yang, T. Chen, Z.Q. Fu, Y.Y. Li, O.M. Ivasishin, and E.J. Lavernia, Determination of atomic diffusion coefficient via isochronal spark plasma sintering, Scripta Mater., 151(2018), p. 47. doi: 10.1016/j.scriptamat.2018.03.033
|
[46] |
J. Xu, S.R. Wang, C.Y. Shang, S.F Huang, and Y. Wang, Microstructure and properties of CoCrFeNi(WC) high-entropy alloy coatings prepared using mechanical alloying and hot pressing sintering, Coatings, 9(2019), No. 1, art. No. 16.
|
[47] |
H. Cheng, Y.C. Xie, Q.H. Tang, C. Rao, and P.Q. Dai, Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Trans. Nonferrous Met. Soc. China, 28(2018), No. 7, p. 1360. doi: 10.1016/S1003-6326(18)64774-0
|
[48] |
W.J. Ge, B. Wu, S.R. Wang, S. Xu, C.Y. Shang, Z.T. Zhang, and Y. Wang, Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering, Adv. Powder Technol., 28(2017), No. 10, p. 2556. doi: 10.1016/j.apt.2017.07.006
|
[49] |
Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, and P.Q. Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Intermetallics, 93(2018), p. 228. doi: 10.1016/j.intermet.2017.09.013
|
[50] |
H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, and T.J. Li, Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys, Mater. Des., 109(2016), p. 539. doi: 10.1016/j.matdes.2016.07.113
|
[51] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332. doi: 10.1016/j.actamat.2016.06.063
|
[52] |
L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys, J. Alloys Compd., 649(2015), p. 585. doi: 10.1016/j.jallcom.2015.07.185
|
[53] |
Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui, Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, Mater. Des., 83(2015), p. 651. doi: 10.1016/j.matdes.2015.06.072
|
[54] |
Y.P. Wang, D.Y. Li, L. Parent, and H. Tian, Improving the wear resistance of white cast iron using a new concept-high-entropy microstructure, Wear, 271(2011), No. 9-10, p. 1623. doi: 10.1016/j.wear.2010.12.029
|
[55] |
A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract. Met. Hard Mater., 57(2016), p. 50. doi: 10.1016/j.ijrmhm.2016.02.006
|
[56] |
C.Y. Shang, E. Axinte, J. Sun, X.T. Li, P. Li, J.W. Du, P.C. Qiao, and Y. Wang, CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, Mater. Des., 117(2017), p. 193. doi: 10.1016/j.matdes.2016.12.076
|
[57] |
Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904. doi: 10.1063/1.2734517
|
[58] |
S. Praveen, B.S. Murty, and R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng. A, 534(2012), p. 83. doi: 10.1016/j.msea.2011.11.044
|
[59] |
Z.Q. Fu, W.P. Chen, S.C. Fang, D.Y. Zhang, H.Q. Xiao, and D.Z. Zhu, Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering, J. Alloys Compd., 553(2013), p. 316. doi: 10.1016/j.jallcom.2012.11.146
|
[60] |
Z.Q. Fu, W.P. Chen, Z. Chen, H.M. Wen, and E.J. Lavernia, Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy, Mater. Sci. Eng. A, 619(2014), p. 137. doi: 10.1016/j.msea.2014.09.077
|
[61] |
P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, and M. Garuti, Microwave processing of high entropy alloys: A powder metallurgy approach, Chem. Eng. Process.: Process Intensif., 122(2017), p. 397. doi: 10.1016/j.cep.2017.02.016
|
[62] |
R. Rosa, P. Veronesi, and C. Leonelli, A review on combustion synthesis intensification by means of microwave energy, Chem. Eng. Process.: Process Intensif., 71(2013), p. 2. doi: 10.1016/j.cep.2013.02.007
|
[63] |
P. Veronesi, C. Leonelli, G. Poli, and A. Casagrande, Enhanced reactive NiAl coatings by microwave-assisted SHS, Compel, 27(2008), No. 2, p. 491. doi: 10.1108/03321640810847779
|
[64] |
P. Veronesi, R. Rosa, E. Colombini, C. Leonelli, G. Poli, and A. Casagrande, Microwave assisted combustion synthesis of non-equilibrium intermetallic compounds, J. Microwave Power Electromagn. Energy, 44(2010), No. 1, p. 45. doi: 10.1080/08327823.2010.11689769
|
[65] |
T. Wang, J. Kong, and B.X. Chao, Microstructure and mechanical properties of FeCoNiCuAl high-entropy alloy prepared by microwave-assisted combustion synthesis, Powder Metall. Technol., 29(2011), No. 6, p. 435.
|
[66] |
P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, and F. Rosi, Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys, Mater. Lett., 162(2016), p. 277. doi: 10.1016/j.matlet.2015.10.035
|
[67] |
P. Veronesi, R. Rosa, E. Colombini, and C. Leonelli, Microwave-assisted preparation of high entropy alloys, Technologies, 3(2015), No. 4, p. 182. doi: 10.3390/technologies3040182
|
[68] |
C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H.B. Bei, M. Lang, R.C. Ewing, and W.L. Mao, High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 8(2017), art. No. 15634. doi: 10.1038/ncomms15634
|
[69] |
A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, Praveen S, R.S. Kottada, and B.S. Murty, Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A, 46(2015), No. 2, p. 791. doi: 10.1007/s11661-014-2644-z
|
[70] |
L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu, Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating, J. Mater. Eng. Perform., 25(2016), No. 12, p. 5513. doi: 10.1007/s11665-016-2396-6
|
[71] |
L.H. Tian, M. Fu, and W. Xiong, Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance, Materials, 11(2018), No. 2, p. 320. doi: 10.3390/ma11020320
|
[72] |
W. Ji, J.Y. Zhang, W.M. Wang, H. Wang, F. Zhang, Y.C. Wang, and Z.Y. Fu, Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid, J. Eur. Ceram. Soc., 35(2015), No. 3, p. 879. doi: 10.1016/j.jeurceramsoc.2014.10.024
|
[73] |
G.B. Raju, A. Mukhopadhyay, K. Biswas, and B. Basu, Densification and high-temperature mechanical properties of hot pressed TiB2–(0–10 wt.%) MoSi2 composites, Scripta Mater., 61(2009), No. 7, p. 674. doi: 10.1016/j.scriptamat.2009.05.031
|
[74] |
W.M. Wang, Z.Y. Fu, H. Wang, and R.Z. Yuan, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J. Eur. Ceram. Soc., 22(2002), No. 7, p. 1045. doi: 10.1016/S0955-2219(01)00424-1
|
[75] |
S.L. Zhang, Y.C. Sun, B.R. Ke, Y.L. Li, W. Ji, W.M. Wang, and Z.Y. Fu, Preparation and characterization of TiB2–(supra-nano-dual-phase) high-entropy alloy cermet by spark plasma sintering, Metals, 8(2018), No. 1, art. No. 58. doi: 10.3390/met8010058
|
[76] |
Y.L. Li, H.Y. Xu, B.R. Ke, Y.C. Sun, K. Yang, W. Ji, W.M. Wang, and Z.Y. Fu, TEM characterization of a supra-nano-dual-phase binder phase in spark plasma sintered TiB2–5wt%HEAs cermet, Ceram. Int., 45(2019), No. 7, p. 9401. doi: 10.1016/j.ceramint.2018.08.174
|
[77] |
Z.Z. Fu and R. Koc, Processing and characterization of TiB2–TiNiFeCrCoAl high-entropy alloy composite, J. Am. Ceram. Soc., 100(2017), No. 7, p. 2803. doi: 10.1111/jace.14814
|
[78] |
I.L. Velo, F.J. Gotor, M.D. Alcalá, C. Real, and J.M. Córdoba, Fabrication and characterization of WC–HEA cemented carbide based on the CoCrFeNiMn high entropy alloy, J. Alloys Compd., 746(2018), p. 1. doi: 10.1016/j.jallcom.2018.02.292
|
[79] |
C.M. Lin, C.W. Tsai, S.M. Huang, C.C. Yang, and J.W. Yeh, New TiC/Co1.5CrFeNi1.5Ti0.5 cermet with slow TiC coarsening during sintering, JOM, 66(2014), No. 10, p. 2050. doi: 10.1007/s11837-014-1095-8
|
[80] |
Y.X. Guo, X.J. Shang, and Q.B. Liu, Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings, Surf. Coat. Technol., 344(2018), p. 353. doi: 10.1016/j.surfcoat.2018.03.035
|
[81] |
Y.X. Guo, Q.B. Liu, and X.J. Shang, In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding, Rare Met., 39(2020), No. 10, p. 1190. doi: 10.1007/s12598-018-1194-8
|
[82] |
E. Colombini, M.L. Gualtieri, R. Rosa, F. Tarterini, M. Zadra, A. Casagrande, and P. Veronesi, SPS-assisted synthesis of SiCp reinforced high entropy alloys: Reactivity of SiC and effects of pre-mechanical alloying and post-annealing treatment, Powder Metall., 61(2018), No. 1, p. 64. doi: 10.1080/00325899.2017.1393162
|
[83] |
X.Y. Liu, L. Zhang, and Y. Xu, Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS, Appl. Phys. A, 123(2017), No. 9, art. No. 567. doi: 10.1007/s00339-017-1151-7
|
[84] |
Q.C. Fan, B.S. Li, and Y. Zhang, The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites, Mater. Sci. Eng. A, 598(2014), p. 244. doi: 10.1016/j.msea.2014.01.044
|
[85] |
W.Q. Wu, R. Zhou, B.Q. Wei, S. Ni, Y. Liu, and M. Song, Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting, Mater. Charact., 144(2018), p. 605. doi: 10.1016/j.matchar.2018.08.019
|