留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(17)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1628
  • HTML全文浏览量:  507
  • PDF下载量:  56
  • 被引次数: 0
Zhen Shao, Lei Cui, Lijun Yang, Peng Lu, Huimiao Wang, Zhuanping Sun, and Jianling Song, Microstructure and mechanical properties of friction pull plug welding for 2219-T87 aluminum alloy with tungsten inert gas weld, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1216-1224. https://doi.org/10.1007/s12613-020-2222-x
Cite this article as:
Zhen Shao, Lei Cui, Lijun Yang, Peng Lu, Huimiao Wang, Zhuanping Sun, and Jianling Song, Microstructure and mechanical properties of friction pull plug welding for 2219-T87 aluminum alloy with tungsten inert gas weld, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1216-1224. https://doi.org/10.1007/s12613-020-2222-x
引用本文 PDF XML SpringerLink
研究论文

2219-T87铝合金TIG焊缝拉拔式摩擦塞补焊接头的微观组织及力学性能分析

  • 通讯作者:

    崔雷    E-mail: leicui@tju.edu.cn

文章亮点

  • (1) 研究了带有TIG焊缝的2219-T87铝合金拉拔式摩擦塞补焊接头不同区域微观组织特征。
  • (2) 统计了接头不同区域中第二相粒子数量占比以及析出相演变规律,并分析了其原因。
  • (3) 研究了轴向拉力对接头抗拉强度的影响并分析了接头断裂模式。
  • 本文研究了6 mm厚2219-T87铝合金TIG焊缝拉拔式摩擦塞补焊接头的微观组织,析出相演变规律以及力学性能。当使用7000 r/min主轴转速,12 mm进给量以及20–22 kN 轴向拉力时,焊接接头成形良好且无焊接缺陷,塞棒与试板之间通过再结晶的方式形成了冶金结合。根据微观组织特征不同,接头可划分为热影响区、热机械影响区、再结晶区、TIG焊缝-热影响区以及TIG焊缝-热机械影响区。TIG焊缝-热机械影响区晶粒受到焊接过程中塞棒旋转挤压作用而发生剧烈塑性变形。热机械影响区发生软化的主要原因是θ'相的溶解以及θ相的粗化。拉伸试验结果表明,轴向拉力为22 kN时,对应接头抗拉强度最高,为237 MPa;接头在TIG焊缝–热机械影响区发生断裂。断口形貌分析表明接头具有良好的塑性与韧性。
  • Research Article

    Microstructure and mechanical properties of friction pull plug welding for 2219-T87 aluminum alloy with tungsten inert gas weld

    + Author Affiliations
    • The friction pull plug welding (FPPW) of the 2219-T87 tungsten inert gas (TIG) welded joint was investigated, and the microstructures, precipitate evolution, mechanical properties, and fracture morphologies of this joint were analyzed and discussed. In this study, defect-free joints were obtained using a rotational speed of 7000 r/min, an axial feeding displacement of 12 mm, and an axial force of 20–22 kN. The results indicated that within these welding parameters, metallurgical bonding between the plug and plate is achieved by the formation of recrystallized grains. The microstructural features of the FPPW joint can be divided into different regions, including the heat-affected zone (HAZ), thermomechanically affected zone (TMAZ), recrystallization zone (RZ), heat-affected zone in the TIG weld (TIG-HAZ), and the thermomechanically affected zone in the TIG weld (TIG-TMAZ). In the TIG-TMAZ, the grains were highly deformed and elongated due to the shear and the extrusion that produces the plug during the FPPW process. The main reason for the softening in the TMAZ is determined to be the dissolution of θ' and coarsening of θ precipitate particles. In a tensile test, the FPPW joint welded with an axial force of 22 kN showed the highest ultimate tensile strength of 237 MPa. The locations of cracks and factures in the TIG-TMAZ were identified. The fracture morphology of the tensile sample showed good plasticity and toughness of the joints.
    • loading
    • [1]
      R. Takeshita and T.L. Hibbard, Friction Plug Welding, United States Patent, Appl. US6213379.B1, 2001.
      [2]
      J.A. Littell, Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld, United States Patent, Appl. US9452491.B1, 2016.
      [3]
      S.A. Brooke and V. Bradford, Friction pull plug welding in Aluminum alloys, [in] TWI Conference the Welding Institute, Huntsville, 2012, p. 1795.
      [4]
      G.Q. Wang, Y.H. Zhao, L.N. Zhang, J.B. Bai, and R.C. Zhu, A new weld repair technique for friction stir welded aluminum structure: inertia friction pull plug welding, China Welding, 26(2017), No. 4, p. 56.
      [5]
      D.F. Metz and M.E. Barkey, Fatigue behavior of friction plug welds in 2195 Al–Li alloy, Int. J. Fatigue, 43(2012), p. 178. doi: 10.1016/j.ijfatigue.2012.04.002
      [6]
      D.F. Metz, E.R. Weishaupt, M.E. Barkey, and B.S. Fairbee, A microstructure and microhardness characterization of a friction plug weld in friction stir welded 2195 Al–Li, J. Eng. Mater. Technol. Trans. ASME, 134(2012), No. 2, art. No. 021005. doi: 10.1115/1.4006066
      [7]
      B. Du, L. Cui, X.Q. Yang, D.P. Wang, and Z.P. Sun, Weakening mechanism and tensile fracture behavior of AA 2219-T87 friction plug welds, Mater. Sci. Eng. A, 693(2017), p. 129. doi: 10.1016/j.msea.2017.03.093
      [8]
      L. Cui, P. Lu, W.K. Li, H.M. Wang, D.P. Wang, Z.P. Zhang, and J.L. Song, Influence of axial force parameters to the quality of friction pull plug welding for 2219-T87 aluminium alloy sheets, Sci. Technol. Weld. Joining, 24(2019), No. 1, p. 27. doi: 10.1080/13621718.2018.1474019
      [9]
      J.Y. Gao, L.J. Yang, L. Cui, P. Lu, J. Yang, and Y.J. Gao, Improving the weld formation and mechanical properties of the AA-5A06 friction pull plug welds by axial force control, Acta Metall. Sinica Engl. Lett., 33(2020), p. 828. doi: 10.1007/s40195-020-01015-1
      [10]
      P. McGill and J. Burkholder, Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy, [in] Ninth International Symposium on Friction Stir Welding, Huntsville, 2012, p. 1188.
      [11]
      P. McGill and J. Burkholder, Damage tolerance behavior of friction stir welds in aluminum alloys, [in] National Space and Missile Materials Symposium, Tampa, 2012, p. 1017.
      [12]
      B. Du, Z.P. Sun, X.Q. Yang, L. Cui, J.L. Song, and Z.P. Zhang, Characteristics of friction plug welding to 10 mm thick AA2219-T87 sheet: Weld formation, microstructure and mechanical property, Mater. Sci. Eng. A, 654(2016), p. 21. doi: 10.1016/j.msea.2015.12.019
      [13]
      X.L. Feng, H.J. Liu, and J.C. Lippold, Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219, Mater. Charact., 82(2013), p. 97. doi: 10.1016/j.matchar.2013.05.010
      [14]
      S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures, Mater. Lett., 59(2005), No. 6, p. 629. doi: 10.1016/j.matlet.2004.10.058
      [15]
      Q. Chu, W.Y. Li, X.W. Yang, J.J. Shen, A. Vairis, W.Y. Feng, and W.B. Wang, Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al–Li alloy, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1739. doi: 10.1016/j.jmst.2018.03.009
      [16]
      H. Li, J.S. Zou, J.S. Yao, and H.P. Peng, The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy, J. Alloys Compd., 727(2017), p. 531. doi: 10.1016/j.jallcom.2017.08.157

    Catalog


    • /

      返回文章
      返回