留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 12
Dec.  2021

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1473
  • HTML全文浏览量:  461
  • PDF下载量:  61
  • 被引次数: 0
Zhong-liang Hu, Hou-quan Cui, Yan-huai Ding, Jing-ying Li, Yi-rong Zhu, and Zhao-hui Li, Graphene oxide wrapped magnetic nanoparticle composites induced by SiO2 coating with excellent regenerability, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 2001-2007. https://doi.org/10.1007/s12613-020-2229-3
Cite this article as:
Zhong-liang Hu, Hou-quan Cui, Yan-huai Ding, Jing-ying Li, Yi-rong Zhu, and Zhao-hui Li, Graphene oxide wrapped magnetic nanoparticle composites induced by SiO2 coating with excellent regenerability, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 2001-2007. https://doi.org/10.1007/s12613-020-2229-3
引用本文 PDF XML SpringerLink
研究论文

具有良好可再生性的新型二氧化硅磁性氧化石墨烯纳米复合材料

  • Research Article

    Graphene oxide wrapped magnetic nanoparticle composites induced by SiO2 coating with excellent regenerability

    + Author Affiliations
    • Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g−1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.

    • loading
    • [1]
      M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, and S. Ramakrishna, A review on nanomaterials for environmental remediation, Energy Environ. Sci., 5(2012), No. 8, p. 8075. doi: 10.1039/c2ee21818f
      [2]
      B. Kossowska, I. Dudka, R. Gancarz, and J. Antonowicz-Juchniewicz, Application of classic epidemiological studies and proteomics in research of occupational and environmental exposure to lead, cadmium and arsenic, Int. J. Hyg. Environ. Health, 216(2013), No. 1, p. 1. doi: 10.1016/j.ijheh.2012.03.002
      [3]
      M. Laatikainen and T. Sainio, Ion exchange in complexing media – Nickel removal from ammoniacal ammonium sulfate solutions, Chem. Eng. J., 373(2019), p. 831. doi: 10.1016/j.cej.2019.05.128
      [4]
      N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, and A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76(2019), p. 17. doi: 10.1016/j.jiec.2019.03.029
      [5]
      J.W. Lu, Z.T. Yuan, X.F. Guo, Z.Y. Tong, and L.X. Li, Magnetic separation of pentlandite from serpentine by selective magnetic coating, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 1. doi: 10.1007/s12613-019-1704-1
      [6]
      S. Wu, X.B. He, L.J. Wang, and K.C. Chou, High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1157. doi: 10.1007/s12613-020-1965-8
      [7]
      M.R. Awual, Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent, Chem. Eng. J., 289(2016), p. 65. doi: 10.1016/j.cej.2015.12.078
      [8]
      M.R. Awual and M.M. Hasan, A novel fine-tuning mesoporous adsorbent for simultaneous lead(II) detection and removal from wastewater, Sens. Actuators B, 202(2014), p. 395. doi: 10.1016/j.snb.2014.05.103
      [9]
      L.F. Delgado, P. Charles, K. Glucina, and C. Morlay, The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—A review, Sci. Total Environ., 435-436(2012), p. 509.
      [10]
      W.K. Buah and P.T. Williams, Granular activated carbons from palm nut shells for gold di-cyanide adsorption, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 172. doi: 10.1007/s12613-013-0710-y
      [11]
      M.F. Li, Y.G. Liu, G.M. Zeng, N. Liu, and S.B. Liu, Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review, Chemosphere, 226(2019), p. 360. doi: 10.1016/j.chemosphere.2019.03.117
      [12]
      X. Liu, X.T. Xu, J. Sun, A. Alsaedi, T. Hayat, J.X. Li, and X.K. Wang, Insight into the impact of interaction between attapulgite and graphene oxide on the adsorption of U(VI), Chem. Eng. J., 343(2018), p. 217. doi: 10.1016/j.cej.2018.02.113
      [13]
      X.T. Liu, K. Pang, H. Yang, and X.Z. Guo, Intrinsically microstructured graphene aerogel exhibiting excellent mechanical performance and super-high adsorption capacity, Carbon, 161(2020), p. 146. doi: 10.1016/j.carbon.2020.01.065
      [14]
      R. Zhang, N. Lu, J.X. Zhang, R.H. Yan, J. Li, L.H. Wang, N. Wang, M. Lv, and M. Zhang, Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes, Biosens. Bioelectron., 150(2020), art. No. 111881. doi: 10.1016/j.bios.2019.111881
      [15]
      M. Zhang, L. Ding, J. Zheng, L.B. Liu, H. Alsulami, M.A. Kutbi, and J.L. Xu, Surface modification of carbon fibers with hydrophilic Fe3O4 nanoparticles for nickel-based multifunctional composites, Appl. Surf. Sci., 509(2020), art. No. 145348. doi: 10.1016/j.apsusc.2020.145348
      [16]
      Y. Ling, M. Zhang, J. Zheng, J.L. Xu, T. Hayat, and N.S. Alharbi, Formation of uniform magnetic C@CoNi alloy hollow hybrid composites with excellent performance for catalysis and protein adsorption, Dalton Trans., 47(2018), No. 23, p. 7839. doi: 10.1039/C8DT01480A
      [17]
      V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, and K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS Nano, 4(2010), No. 7, p. 3979. doi: 10.1021/nn1008897
      [18]
      Y.X. Ma, W.J. Shao, W. Sun, Y.L. Kou, X. Li, and H.P. Yang, One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions, Appl. Surf. Sci., 459(2018), p. 544. doi: 10.1016/j.apsusc.2018.08.025
      [19]
      M.S. Raghu, K.Y. Kumar, M.K. Prashanth, B.P. Prasanna, R. Vinuth, and C.B.P. Kumar, Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide–Fe3O4 nanocomposite for water purification, J. Water Process Eng., 17(2017), p. 22. doi: 10.1016/j.jwpe.2017.03.001
      [20]
      J.H. Miao, F.H. Wang, Y.J. Chen, Y.Z. Zhu, Y. Zhou, and S.T. Zhang, The adsorption performance of tetracyclines on magnetic graphene oxide: A novel antibiotics absorbent, Appl. Surf. Sci., 475(2019), p. 549. doi: 10.1016/j.apsusc.2019.01.036
      [21]
      S.C. Chang, Q. Zhang, Y.K. Lu, S.Z. Wu, and W. Wang, High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents: Experimental and molecular dynamics simulation study, Sep. Purif. Technol., 238(2020), art. No. 116400. doi: 10.1016/j.seppur.2019.116400
      [22]
      H. Wei, W.S. Yang, Q. Xi, and X. Chen, Preparation of Fe3O4@graphene oxide core-shell magnetic particles for use in protein adsorption, Mater. Lett., 82(2012), p. 224. doi: 10.1016/j.matlet.2012.05.086
      [23]
      S.D. Pan, X.H. Chen, H.Y. Shen, X.P. Li, M.Q. Cai, Y.G. Zhao, and M.C. Jin, Rapid and effective sample cleanup based on graphene oxide-encapsulated core-shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography-tandem mass spectrometry, Anal. Chim. Acta, 919(2016), p. 34. doi: 10.1016/j.aca.2016.02.035
      [24]
      Z.L. Hu, S.L. Qin, Z. Huang, Y.R. Zhu, L.J. Xi, and Z.H. Li, Stepwise synthesis of graphene oxide-wrapped magnetic composite and its application for the removal of Pb(II), Arab. J. Sci. Eng., 42(2017), No. 10, p. 4239. doi: 10.1007/s13369-017-2613-0
      [25]
      S.W. Yang, J.C. Liu, F. Pan, X.Z. Yin, L.X. Wang, D.Z. Chen, Y.S. Zhou, C.X. Xiong, and H. Wang, Fabrication of self-healing and hydrophilic coatings from liquid-like graphene@SiO2 hybrids, Compos. Sci. Technol., 136(2016), p. 133. doi: 10.1016/j.compscitech.2016.10.012
      [26]
      Z.L. Hu, X.J. Zhang, J.Y. Li, and Y.R. Zhu, Comparative study on the regeneration of Fe3O4@graphene oxide composites, Front. Chem., 8(2020), art. No. 150. doi: 10.3389/fchem.2020.00150
      [27]
      S.K. Singh, M.K. Singh, P.P. Kulkarni, V.K. Sonkar, J.J.A. Grácio, and D. Dash, Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications, ACS Nano, 6(2012), No. 3, p. 2731. doi: 10.1021/nn300172t
      [28]
      R.H. Gangupomu, M.L. Sattler, and D. Ramirez, Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities, J. Hazard. Mater., 302(2016), p. 362. doi: 10.1016/j.jhazmat.2015.09.002
      [29]
      S. Alwarappan, A. Erdem, C. Liu, and C.Z. Li, Probing the electrochemical properties of graphene nanosheets for biosensing applications, J. Phys. Chem. C, 113(2009), No. 20, p. 8853. doi: 10.1021/jp9010313
      [30]
      M. Zhang, Y. Ling, L.B. Liu, J.L. Xu, J.X. Li, and Q.L. Fang, Carbon supported PdNi alloy nanoparticles on SiO2 nanocages with enhanced catalytic performance, Inorg. Chem. Front., 7(2020), No. 17, p. 3081. doi: 10.1039/D0QI00596G
      [31]
      S.A. Singh, B. Vemparala, and G. Madras, Adsorption kinetics of dyes and their mixtures with Co3O4–ZrO2 composites, J. Environ. Chem. Eng., 3(2015), No. 4, p. 2684. doi: 10.1016/j.jece.2015.09.029
      [32]
      J. Zheng, M. Zhang, T. Miao, J.X. Yang, J.L. Xu, N.S. Alharbi, and M. Wakeel, Anchoring nickel nanoparticles on three-dimensionally macro-/mesoporous titanium dioxide with a carbon layer from polydopamine using polymethylmethacrylate microspheres as sacrificial templates, Mater. Chem. Front., 3(2019), No. 2, p. 224. doi: 10.1039/C8QM00467F
      [33]
      A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir, 19(2003), No. 15, p. 6050. doi: 10.1021/la026525h

    Catalog


    • /

      返回文章
      返回