留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 9
Sep.  2021

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1306
  • HTML全文浏览量:  361
  • PDF下载量:  46
  • 被引次数: 0
Zhi-kun Zhao, Hui-lin Xie, Zi-yue Wen, Ling Liu, Bo-rong Wu, Shi Chen, Dao-bin Mu, and Chao-xiang Xie, Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1488-1496. https://doi.org/10.1007/s12613-020-2232-8
Cite this article as:
Zhi-kun Zhao, Hui-lin Xie, Zi-yue Wen, Ling Liu, Bo-rong Wu, Shi Chen, Dao-bin Mu, and Chao-xiang Xie, Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1488-1496. https://doi.org/10.1007/s12613-020-2232-8
引用本文 PDF XML SpringerLink
研究论文

改性Li3PO4对富镍LiNi0.6Co0.2Mn0.2O2电化学性能的影响

  • Research Article

    Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2

    + Author Affiliations
    • Surface deterioration occurs more easily in nickel-rich cathode materials with the increase of nickel content. To simultaneously prevent deterioration of active cathode materials and improve the electrochemical performance of the nickel-rich cathode material, the surface of nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is decorated with the stable structure and conductive Li3PO4 by a facile method. The LiNi0.6Co0.2Mn0.2O2–1wt%, 2wt%, 3wt%Li3PO4 samples deliver a high-capacity retention of more than 85% after 100 cycles at 1 C under a high voltage of 4.5 V. The effect of different coating amounts (0–5wt%) for the LiNi0.6Co0.2Mn0.2O2 cathode is analyzed in detail. Results show that 2wt% coating of Li3PO4 gives better performance compared to other coating concentrations. Detailed analysis of the structure of the samples during the charge−discharge process is performed by in-situ X-ray diffraction. It is indicated that the modification for LiNi0.6Co0.2Mn0.2O2 cathode could protect the well-layered structure under high voltages. In consequence, the electrochemical performance of modified samples is greatly improved.

    • loading
    • [1]
      B.L. Ellis, K.T. Lee, and L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chem. Mater., 22(2010), No. 3, p. 691. doi: 10.1021/cm902696j
      [2]
      M.J. Lain, J. Brandon, and E. Kendrick, Design strategies for high power vs. high energy lithium ion cells, Batteries, 5(2019), No. 4, art. No. 64. doi: 10.3390/batteries5040064
      [3]
      J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. doi: 10.1038/35104644
      [4]
      S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, and Y.K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives, ACS Energy Lett., 2(2017), No. 1, p. 196. doi: 10.1021/acsenergylett.6b00594
      [5]
      P.H. Xiao, T. Shi, W.X. Huang, and G. Ceder, Understanding surface densified phases in Ni-rich layered compounds, ACS Energy Lett., 4(2019), No. 4, p. 811. doi: 10.1021/acsenergylett.9b00122
      [6]
      W. Liu, P. Oh, X.E. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54(2015), No. 15, p. 4440. doi: 10.1002/anie.201409262
      [7]
      A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO–C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
      [8]
      J.S. Meng, H.C. Guo, C.J. Niu, Y.L. Zhao, L. Xu, Q. Li, and L.Q. Mai, Advances in structure and property optimizations of battery electrode materials, Joule, 1(2017), No. 3, p. 522. doi: 10.1016/j.joule.2017.08.001
      [9]
      U.H. Kim, L.Y. Kuo, P. Kaghazchi, C.S. Yoon, and Y.K. Sun, Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries, ACS Energy Lett., 4(2019), No. 2, p. 576. doi: 10.1021/acsenergylett.8b02499
      [10]
      T. Weigel, F. Schipper, E.M. Erickson, F.A. Susai, B. Markovsky, and D. Aurbach, Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations, ACS Energy Lett., 4(2019), No. 2, p. 508. doi: 10.1021/acsenergylett.8b02302
      [11]
      Y. Lee, J. Lee, K.Y. Lee, J. Mun, J.K. Lee, and W. Choi, Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries, J. Power Sources, 315(2016), p. 284. doi: 10.1016/j.jpowsour.2016.03.024
      [12]
      F. Schipper, H. Bouzaglo, M. Dixit, E.M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D.T. Major, and D. Aurbach, From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries, Adv. Energy Mater., 8(2018), No. 4, art. No. 1701682. doi: 10.1002/aenm.201701682
      [13]
      S.Y. Li, X.L. Fu, Y.W. Liang, S.X. Wang, X.N. Zhou, H. Dong, K.Y. Tuo, C.K. Gao, and X.L. Cui, Enhanced structural stability of boron-doped layered@spinel@carbon heterostructured lithium-rich manganese-based cathode materials, ACS Sustainable Chem. Eng., 8(2020), No. 25, p. 9311. doi: 10.1021/acssuschemeng.0c00870
      [14]
      N.S. Zhang, L. Ai, L.P. Mao, Y.H. Feng, Y.C. Xie, S.X. Wang, Y.W. Liang, X.L. Cui, and S.Y. Li, Understanding the role of Mg-doped on core-shell structured layered oxide LiNi0.6Co0.2Mn0.2O2, Electrochim. Acta, 319(2019), p. 822. doi: 10.1016/j.electacta.2019.07.048
      [15]
      Z.K. Zhao, Z.Y. Wen, C.L. Li, Y. Ding, Y. Jiang, F. Wu, B.R. Wu, S. Chen, and D.B. Mu, Effects of different charge cut-off voltages on the surface structure and electrochemical properties of LiNi0.6Co0.2Mn0.2O2, Electrochim. Acta, 353(2020), art. No. 136518. doi: 10.1016/j.electacta.2020.136518
      [16]
      Z.K. Zhao, S. Chen, D.B. Mu, R. Ma, C.L. Li, B.R. Wu, F. Wu, K.L. Cheng, and C.X. Xie, Understanding the surface decoration on primary particles of nickel-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material with lithium phosphate, J. Power Sources, 431(2019), p. 84. doi: 10.1016/j.jpowsour.2019.05.046
      [17]
      B.H. Song, W.D. Li, S.M. Oh, and A. Manthiram, Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 11, p. 9718. doi: 10.1021/acsami.7b00070
      [18]
      Y.S. Lee, W.K. Shin, A.G. Kannan, S.M. Koo, and D.W. Kim, Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer, ACS Appl. Mater. Interfaces, 7(2015), No. 25, p. 13944. doi: 10.1021/acsami.5b02690
      [19]
      Y.P. Chen, Y. Zhang, F. Wang, Z.Y. Wang, and Q. Zhang, Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating, J. Alloys Compd., 611(2014), p. 135. doi: 10.1016/j.jallcom.2014.05.068
      [20]
      J.Z. Kong, H.F. Zhai, C. Ren, G.A. Tai, X.Y. Yang, F. Zhou, H. Li, J.X. Li, and Z. Tang, High-capacity Li(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent, J. Solid State Electrochem., 18(2014), No. 1, p. 181. doi: 10.1007/s10008-013-2240-y
      [21]
      D. Mohanty and H. Gabrisch, Microstructural investigation of LixNi1/3Mn1/3Co1/3O2(x ≤ 1) and its aged products via magnetic and diffraction study, J. Power Sources, 220(2012), p. 405. doi: 10.1016/j.jpowsour.2012.08.005
      [22]
      P. Yue, Z.X. Wang, W.J. Peng, L.J. Li, W. Chen, H.J. Guo, and X.H. Li, Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries, Powder Technol., 214(2011), No. 3, p. 279. doi: 10.1016/j.powtec.2011.08.022
      [23]
      J.C. Zhang, Z.Y. Li, R. Gao, Z.B. Hu, and X.F. Liu, High rate capability and excellent thermal stability of Li+-conductive Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 via a synchronous lithiation strategy, J. Phys. Chem. C, 119(2015), No. 35, p. 20350. doi: 10.1021/acs.jpcc.5b06858
      [24]
      Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett., 13(2013), No. 3, p. 1145. doi: 10.1021/nl304558t
      [25]
      P.Y. Hou, J.M. Yin, M. Ding, J.Z. Huang, and X.J. Xu, Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives, Small, 13(2017), No. 45, art. No. 1701802. doi: 10.1002/smll.201701802
      [26]
      J.H. Shim, Y.M. Kim, M. Park, J. Kim, and S. Lee, Reduced graphene oxide-wrapped nickel-rich cathode materials for lithium ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 22, p. 18720. doi: 10.1021/acsami.7b02654
      [27]
      H. Wang, W.J. Ge, W. Li, F. Wang, W.J. Liu, M.Z. Qu, and G.C. Peng, Facile fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 cathode with improved cycling performance for rechargeable Li-ion battery, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 18439. doi: 10.1021/acsami.6b04644
      [28]
      S.Y. Liu, C.C. Zhang, Q.L. Su, L.Y. Li, J.M. Su, T. Huang, Y.B. Chen, and A.S. Yu, Enhancing electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by lithium-ion conductor surface modification, Electrochim. Acta, 224(2017), p. 171. doi: 10.1016/j.electacta.2016.12.024
      [29]
      F. Tao, X.X. Yan, J.J. Liu, H.L. Zhang, and L. Chen, Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage, Electrochim. Acta, 210(2016), p. 548. doi: 10.1016/j.electacta.2016.05.060
      [30]
      L.W. Liang, J.B. Jiang, F. Jiang, G.R. Hu, Y.B. Cao, Z.D. Peng, and K. Du, An ordered olivine-type LiCoPO4 layer grown on LiNi0.6Mn0.2Co0.2O2 cathode materials applied to lithium-ion batteries, J. Alloys Compd., 695(2017), p. 1993. doi: 10.1016/j.jallcom.2016.11.034
      [31]
      H. Liu, C. Chen, C.Y. Du, X.S. He, G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng, Y.L. Ma, and Y.Z. Gao, Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries, J. Mater. Chem. A, 3(2015), No. 6, p. 2634. doi: 10.1039/C4TA04823G
      [32]
      Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku, Crystal and electronic structures of superstructural Li1–x [Co1/3Ni1/3Mn1/3]O2(0≤ x ≤1), J. Power Sources, 119-121(2003), p. 644. doi: 10.1016/S0378-7753(03)00194-0
      [33]
      T. Ohzuku and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 30(2001), No. 7, p. 642. doi: 10.1246/cl.2001.642

    Catalog


    • /

      返回文章
      返回