Cite this article as: |
Jian-guang Lu, Chen-chen Lan, Qing Lyu, Shu-hui Zhang, and Jian-ning Sun, Effects of SiO2 on the preparation and metallurgical properties of acid oxidized pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 629-636. https://doi.org/10.1007/s12613-020-2236-4 |
The effects of SiO2 content on the preparation process and metallurgical properties of acid oxidized pellets, including compressive strength, reduction, and softening–melting behaviors, were systematically investigated. Mineralogical structures, elemental distribution, and pore size distribution were varied to analyze the mechanism of the effects. The results show that with an increase in SiO2 content from 3.51wt% to 7.18wt%, compressive strength decreases from 3150 N/pellet to 2100 N/pellet and reducibility decreases from 76.5% to 71.4%. The microstructure showed that pellets with high SiO2 content contained more magnetite in the mineralogical structures. Additionally, some liquid phases appeared, which hindered the continuous crystallization of hematite. Also, the softening–melting properties of the pellets clearly deteriorated as the SiO2 content increased. With increasing SiO2 content, the temperature range of the softening–melting zone decreased, and the maximum differential pressure and the comprehensive permeability index increased significantly. When acid oxidized pellets are used as the raw materials for blast furnace smelting, it should be combined with high basicity sinters to improve the softening–melting behaviors of the comprehensive charge.
[1] |
Y.G. Chen, Z.C. Guo, and Z. Wang, Influence of CeO2 on NOx emission during iron ore sintering, Fuel Process. Technol., 90(2009), No. 7-8, p. 933. doi: 10.1016/j.fuproc.2009.03.021
|
[2] |
C.C. Yang, D.Q. Zhu, and J. Pan, Some basic properties of granules from ore blends consisting of ultrafine magnetite and hematite ores, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 953. doi: 10.1007/s12613-019-1824-7
|
[3] |
H. Zhou, M.X. Zhou, Z.H. Liu, M. Cheng, and J.Z. Chen, Modeling NOx emission of coke combustion in ore sintering process and its experimental validation, Fuel, 179(2016), p. 322. doi: 10.1016/j.fuel.2016.03.098
|
[4] |
H. Zhou, Z.H. Liu, M. Cheng, M.X. Zhou, and R.P. Liu, Influence of coke combustion on NOx emission during iron ore sintering, Energy Fuels, 29(2015), No. 2, p. 974. doi: 10.1021/ef502524y
|
[5] |
A.B. Kotta, A. Patra, M. Kumar, and S.K. Karak, Effect of molasses binder on the physical and mechanical properties of iron ore pellets, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 41. doi: 10.1007/s12613-019-1708-x
|
[6] |
T.C. Ooi, D. Thompson, D.R. Anderson, R. Fisher, T. Fray, and M. Zandi, The effect of charcoal combustion on iron-ore sintering performance and emission of persistent organic pollutants, Combust. Flame, 158(2011), No. 5, p. 979. doi: 10.1016/j.combustflame.2011.01.020
|
[7] |
W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Cleaner Prod., 233(2019), p. 1314. doi: 10.1016/j.jclepro.2019.06.180
|
[8] |
H.Q. Zhang and J.T. Fu, Oxidation behavior of artificial magnetite pellets, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 603. doi: 10.1007/s12613-017-1442-1
|
[9] |
X.X. Huang, X.H. Fan, X.L. Chen, M. Gan, Z.Y. Ji, and R.Y. Zheng, A novel blending principle and optimization model for low-carbon and low-cost sintering in ironmaking process, Powder Technol., 355(2019), p. 629. doi: 10.1016/j.powtec.2019.07.085
|
[10] |
T.J. Yang, J.L. Zhang, and H.W. Guo, Realizing low carbon ironmaking with low consumption, low emission and high efficiency under the guidance of scientific development concept, Ironmaking, 31(2012), No. 4, p. 1.
|
[11] |
Q.J. Gao, X. Jiang, G. Wei, and F.M. Shen, Effects of MgO on densification and consolidation of oxidized pellets, J. Cent. South Univ., 21(2014), p. 877. doi: 10.1007/s11771-014-2013-5
|
[12] |
Q.J. Gao, F.M. Shen, G. Wei, X. Jiang, and H.Y. Zheng, Effects of MgO containing additive on low-temperature metallurgical properties of oxidized pellet, J. Iron Steel Res. Int., 20(2013), No. 7, p. 25. doi: 10.1016/S1006-706X(13)60121-1
|
[13] |
Q.J. Gao, Y.S. Shen, X. Jiang, H.Y. Zheng, F.M. Shen, and C.S. Liu, Effect of MgO on oxidation process of Fe3O4 in pellets, J. Iron Steel Res. Int., 23(2016), No. 10, p. 1007. doi: 10.1016/S1006-706X(16)30151-0
|
[14] |
Z.C. Huang, Z.G. Han, J.W. Zhou, T. Jiang and X.P. Yang, Influence of MgO on microstructure of fine magnetite concentrate based sinter, Iron Steel, 40(2005), No. 9, p. 16.
|
[15] |
D.Q. Zhu, Z.F. Gao, J. Pan, T.J. Chun, and C.C. Yang, Influence of pellet basicity and MgO content on roasting and metallurgical properties of pellets, J. Cent. South Univ. Sci. Technol., 44(2013), No. 10, p. 3963.
|
[16] |
Q.J. Gao, G. Wei, Y.B. He, and F.M. Shen, Effect of MgO on compressive strength of pellet, J. Northeast. Univ. Nat. Sci., 34(2013), No. 1, p. 103.
|
[17] |
Q.J. Gao, F.M. Shen, X. Jiang, G. Wei, and H.Y. Zheng, Gas-solid reduction kinetic model of MgO-fluxed pellets, Int. J. Miner. Metall. Mater., 21(2014), No. 1, p. 12. doi: 10.1007/s12613-014-0859-z
|
[18] |
T. Umadevi, P. Kumar, N.F. Lobo, M. Prabhu, P.C. Mahapatra, and M. Ranjan, Influence of pellet basicity (CaO/SiO2) on iron ore pellet properties and microstructure, ISIJ Int., 51(2011), No. 1, p. 14. doi: 10.2355/isijinternational.51.14
|
[19] |
D.Q. Zhu, T.J. Chun, J. Pan, and J.L. Zhang, Influence of basicity and MgO content on metallurgical performances of Brazilian specularite pellets, Int. J. Miner. Process., 125(2013), p. 51. doi: 10.1016/j.minpro.2013.09.008
|
[20] |
X.H. Fan, L.B. Xie, M. Gan, X.L. Chen, and L.S. Yuan, Roasting characteristics of magnesium pellets and mechanism of strengthening concretion, J. Cent. South Univ. Sci. Technol., 44(2013), No. 2, p. 449.
|
[21] |
X.H. Fan, M. Gan, T. Jiang, L.S. Yuan, and X.L. Chen, Influence of flux additives on iron ore oxidized pellets, J. Cent. South Univ., 17(2010), No. 4, p. 732. doi: 10.1007/s11771-010-0548-7
|
[22] |
X.F. Cai and T.L. Tian, Effect of basicity on strength high magnesia basicity pellet, Multipurpose Util. Miner. Resour., 4(2014), p. 48.
|
[23] |
S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar V, D. Bhattacharjee, and R. Venugopal, Effect of pellet basicity and MgO content on the quality and microstructure of hematite pellets, Int. J. Miner. Process., 99(2011), No. 1-4, p. 43. doi: 10.1016/j.minpro.2011.03.004
|
[24] |
J. Li, C.C Han, A.M. Yang, W.X. Liu, Y.Z. Zhang, and L.J. Liu, Effect of SiO2 on quality of magnesian acid pellets, J. Iron Steel Res., 29(2017), No. 11, p. 872.
|
[25] |
C.C. Lan, S.H. Zhang, X.J. Liu, Q. Lyu, and M.F. Jiang, Change and mechanism analysis of the softening-melting behavior of the iron-bearing burden in a hydrogen-rich blast furnace, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14255. doi: 10.1016/j.ijhydene.2020.03.143
|
[26] |
J. Tang, M.S. Chu, C. Feng, F. Li, and Z.G. Liu, Phases transition and consolidation mechanism of high chromium vanadium-titanium magnetite pellet by oxidation process, High Temp. Mater. Processes, 35(2016), No. 7, p. 729. doi: 10.1515/htmp-2015-0067
|
[27] |
H. Papacek, Quality aspects in pellettising of iron ores, Steel Technol. Int., 25(1993), No. 7, p. 227.
|
[28] |
Y.M. Chen and J. Li, Crystal rule of Fe2O3 in oxidized pellet, J. Cent. South Univ. Sci. Technol., 38(2007), No. 1, p. 70.
|
[29] |
Y.P. Zhang, J.Y. Fu, T. Jiang, and Y.B. Yang, The Influence of gangue contents on properties of pellet, Sintering Pelletizing, 27(2002), No. 4, p. 11.
|