留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 12
Dec.  2021

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1421
  • HTML全文浏览量:  492
  • PDF下载量:  101
  • 被引次数: 0
Peng Li, Mei-feng Cai, Pei-tao Wang, Qi-feng Guo, Sheng-jun Miao, and Fen-hua Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1875-1886. https://doi.org/10.1007/s12613-020-2237-3
Cite this article as:
Peng Li, Mei-feng Cai, Pei-tao Wang, Qi-feng Guo, Sheng-jun Miao, and Fen-hua Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1875-1886. https://doi.org/10.1007/s12613-020-2237-3
引用本文 PDF XML SpringerLink
研究论文

单轴加载下含孔洞节理岩石力学特性及能量演化机制研究

  • Research Article

    Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading

    + Author Affiliations
    • To investigate the impact of an opening and joints with different inclination angles on the mechanical response behavior, the energy evolution characteristics, and distribution law of granite specimens, uniaxial loading tests were performed on the parallel jointed rock samples with an opening. Results indicated an initial decreasing trend of the strength and deformation parameters, which later increases with increased inclination angle, reaching minimum values when the inclination angle is 45°. Evolution curves of the elastic strain energy and dissipated energy with strain of the samples showed step-like gradual mutation characteristics. The peak total energy, peak elastic strain energy, peak dissipated energy, and total input energy during the failure of the samples showed significant nonlinear characteristics with increasing inclination angle. The opening and joints as well as the change of the inclination angle had significant influences on the proportion of the elastic strain energy of the samples prior to the peak, resulting in the difference of the distribution law of input energy. Moreover, the energy mechanism of the sample failure was discussed. Results showed that the energy release was the internal cause of the sudden destruction of the entire rock mass.

    • loading
    • [1]
      M.Q. You and A.Z. Hua, Energy analysis on failure process of rock specimen, Chin. J. Rock Mech. Eng., 21(2002), No. 6, p. 778. doi: 10.3321/j.issn:1000-6915.2002.06.004
      [2]
      H.P. Xie, R.D. Peng, and Y. Ju, Energy dissipation of rock deformation and fracture, Chin. J. Rock Mech. Eng., 23(2004), No. 21, p. 3565. doi: 10.3321/j.issn:1000-6915.2004.21.001
      [3]
      H.P. Xie, R.D. Peng, Y. Ju, and H.W. Zhou, On energy analysis of rock failure, Chin. J. Rock Mech. Eng., 24(2005), No. 15, p. 2603. doi: 10.3321/j.issn:1000-6915.2005.15.001
      [4]
      Z.Z. Zhang and F. Gao, Research on nonlinear characteristics of rock energy evolution under uniaxial compression, Chin. J. Rock Mech. Eng., 31(2012), No. 6, p. 1198. doi: 10.3969/j.issn.1000-6915.2012.06.015
      [5]
      J.P. Zuo, Y.M. Huang, G.J. Xiong, J. Liu, and M.M. Li, Study of energy-drop coefficient of brittle rock failure, Rock Soil Mech., 35(2014), No. 2, p. 321. doi: 10.16285/j.rsm.2014.02.004
      [6]
      Z.Y. Li, G. Wu, T.Z. Huang, and Y. Liu, Variation of energy and criteria for strength failure of shale under traixial cyclic loading, Chin. J. Rock Mech. Eng., 37(2018), No. 3, p. 662. doi: 10.13722/j.cnki.jrme.2017.0927
      [7]
      F.Q. Gong, S. Luo, X.B. Li, and J.Y. Yan, Linear energy storage and dissipation rule of red sandstone materials during the tensile failure process, Chin. J. Rock Mech. Eng., 37(2018), No. 2, p. 352. doi: 10.13722/j.cnki.jrme.2017.0963
      [8]
      W.L. Liu, E.C. Yan, H. Dai, Y. Du, W.B. Xiao, and S. Zhao, Study on characteristic strength and energy evolution law of Badong formation mudstone under water effect, Chin. J. Rock Mech. Eng., 39(2020), No. 2, p. 311. doi: 10.13722/j.cnki.jrme.2019.0654
      [9]
      Q.B. Meng, C.K. Wang, B.X. Huang, H. Pu, Z.Z. Zhang, W. Sun, and J. Wang, Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions, Chin. J. Rock Mech. Eng., 39(2020), No. 10, p. 2047. doi: 10.13722/j.cnki.jrme.2020.0208
      [10]
      G.Q. Chen, J.C. Wu, W.Z. Jiang, S.J. Li, Z.B. Qiao, and W.B. Yang, An evaluation method of rock brittleness based on the whole process of elastic energy evolution, Chin. J. Rock Mech. Eng., 39(2020), No. 5, p. 901. doi: 10.13722/j.cnki.jrme.2019.0778
      [11]
      Z.T. Bieniawski and M.J. Bernede, Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16(1979), No. 2, p. 138. doi: 10.1016/0148-9062(79)91451-7
      [12]
      L. Weng, X.B. Li, A. Taheri, Q.H. Wu, and X.F. Xie, Fracture evolution around a cavity in brittle rock under uniaxial compression and coupled static–dynamic loads, Rock Mech. Rock Eng., 51(2018), No. 2, p. 531. doi: 10.1007/s00603-017-1343-7
      [13]
      X.G. Zhao, M. Cai, J. Wang, and L.K. Ma, Damage stress and acoustic emission characteristics of the Beishan granite, Int. J. Rock Mech. Min. Sci., 64(2013), p. 258. doi: 10.1016/j.ijrmms.2013.09.003
      [14]
      V. Hajiabdolmajid, P.K. Kaiser, and C.D. Martin, Modelling brittle failure of rock, Int. J. Rock Mech. Min. Sci., 39(2002), No. 6, p. 731. doi: 10.1016/S1365-1609(02)00051-5
      [15]
      Z.L. Zhou, L.H. Tan, W.Z. Cao, Z.Y. Zhou, and X. Cai, Fracture evolution and failure behaviour of marble specimens containing rectangular cavities under uniaxial loading, Eng. Fract. Mech., 184(2017), p. 183. doi: 10.1016/j.engfracmech.2017.08.029
      [16]
      P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, H.F. Wang, and K. Liu, Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1217. doi: 10.1007/s12613-019-1887-5
      [17]
      X.P. Zhou, J. Z. Zhang, Q.H. Qian, and Y. Niu, Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques, J. Struct. Geol., 126(2019), p. 129. doi: 10.1016/j.jsg.2019.06.003
      [18]
      X.Q. He, C. Zhou, D.Z. Song, Z.L. Li, A.Y. Gao, S.Q. He, and M. Khan, Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097. doi: 10.1007/s12613-021-2267-5
      [19]
      P. Li and M.F. Cai, Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression, J. Cent. South Univ., 28(2021), No. 6, p. 1857. doi: 10.1007/s11771-021-4735-5
      [20]
      Z.Z. Zhang and F. Gao, Confining pressure effect on rock energy, Chin. J. Rock Mech. Eng., 34(2015), No. 1, p. 1. doi: 10.13722/j.cnki.jrme.2015.01.001
      [21]
      H.P. Xie, Y. Ju, and L.Y. Li, Criteria for strength and structural failure of rocks based on energy dissipation and release principles, Chin. J. Rock Mech. Eng., 24(2005), No. 17, p. 3003. doi: 10.3321/j.issn:1000-6915.2005.17.001
      [22]
      P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1363. doi: 10.1007/s12613-018-1690-8
      [23]
      X.H. Wu, Q.F. Guo, P. Li, F.H. Ren, J. Zhang, and M.F. Cai, Investigating the effect of temperature changes on the physical field of surrounding rock in a deep gold mine, Adv. Mater. Sci. Eng., 2021(2021), art. No. 8490864. doi: 10.1155/2021/8490864
      [24]
      P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, In situ stress state of the northwest region of the Jiaodong peninsula, China from overcoring stress measurements in three gold mines, Rock Mech. Rock Eng., 52(2019), p. 4497. doi: 10.1007/s00603-019-01827-3
      [25]
      P. Li, Y.Q. Wu, and Y. Zhang, Mechanical and acoustic responses of brittle geomaterials with a hole under a compressive disturbance, Adv. Mater. Sci. Eng., 2021(2021), art. No. 5292925. doi: 10.1155/2021/5292925

    Catalog


    • /

      返回文章
      返回