Cite this article as: |
Tingting Zhang, Wenxian Wang, Jie Zhang, and Zhifeng Yan, Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1237-1248. https://doi.org/10.1007/s12613-020-2240-8 |
张婷婷 E-mail: zhangtingting@tyut.edu.cn
[1] |
L.M. Liu, S.X. Wang, and M.L. Zhu, Study on TIG welding of dissimilar Mg alloy and Cu with Fe as interlayer, Sci. Technol. Weld. Joining, 11(2006), No. 5, p. 523. doi: 10.1179/174329306X122794
|
[2] |
C.W. Tan, W.X. He, X.T. Gong, L.Q. Li, and J.C. Feng, Influence of laser power on microstructure and mechanical properties of fiber laser-tungsten inert gas hybrid welded Mg/Cu dissimilar joints, Mater. Des., 78(2015), p. 51. doi: 10.1016/j.matdes.2015.04.022
|
[3] |
D.X. Ren and L.M. Liu, Interface microstructure and mechanical properties of arc spot welding Mg–steel dissimilar joint with Cu interlayer, Mater. Des., 59(2014), p. 369. doi: 10.1016/j.matdes.2014.03.006
|
[4] |
B. Arcot, C. Cabral, J.M.E. Harper, and S.P. Murarka, Intermetallic reactions between copper and magnesium as an adhesion/barrier layer, MRS Online Proc. Lib., 225(1991), No. 1, p. 231.
|
[5] |
G. Mahendran, V. Balasubramanian, and T. Senthilvelan, Influences of diffusion bonding process parameters on bond characteristics of Mg–Cu dissimilar joints, Trans. Nonferrous Met. Soc. China, 20(2010), No. 6, p. 997. doi: 10.1016/S1003-6326(09)60248-X
|
[6] |
A. Macwan and D.L. Chen, Microstructure and mechanical properties of ultrasonic spot welded copper-to-magnesium alloy joints, Mater. Des., 84(2015), p. 261. doi: 10.1016/j.matdes.2015.06.104
|
[7] |
A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, and I. Galvão, Effect of explosive mixture on quality of explosive welds of copper to aluminium, Mater. Des., 95(2016), p. 256. doi: 10.1016/j.matdes.2016.01.116
|
[8] |
G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvão, and A. Loureiro, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds, Mater. Des., 122(2017), p. 172. doi: 10.1016/j.matdes.2017.02.087
|
[9] |
T.T. Zhang, W.X. Wang, W. Zhang, Y. Wei, X.Q. Cao, Z.F. Yan, and J. Zhou, Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding, J. Alloys Compd., 735(2018), p. 1759. doi: 10.1016/j.jallcom.2017.11.285
|
[10] |
I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, and A.M. Jorge, High cooling rates and metastable phases at the interfaces of explosively welded materials, Acta Mater., 135(2017), p. 277. doi: 10.1016/j.actamat.2017.06.038
|
[11] |
F. Findik, Recent developments in explosive welding, Mater. Des., 32(2011), No. 3, p. 1081. doi: 10.1016/j.matdes.2010.10.017
|
[12] |
X.D. Yuan, W.X. Wang, X.Q. Cao, T.T. Zhang, R.S. Xie, and R.F. Liu, Numerical study on the interfacial behavior of Mg/Al plate in explosive/impact welding, Sci. Eng. Compos. Mater., 24(2017), No. 4, p. 581. doi: 10.1515/secm-2015-0316
|
[13] |
R.F. Liu, W.X. Wang, T.T. Zhang, and X.D. Yuan, Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding, Sci. Eng. Compos. Mater., 24(2017), No. 6, p. 833. doi: 10.1515/secm-2015-0491
|
[14] |
X. Wang, Y.Y. Zheng, H.X. Liu, Z.B. Shen, Y. Hu, W. Li, Y.Y. Gao, and C. Guo, Numerical study of the mechanism of explosive/impact welding using Smoothed Particle Hydrodynamics method, Mater. Des., 35(2012), p. 210. doi: 10.1016/j.matdes.2011.09.047
|
[15] |
Y. Aizawa, J. Nishiwaki, Y. Harada, S. Muraishi, and S. Kumai, Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces, J. Manuf. Processes, 24(2016), p. 100. doi: 10.1016/j.jmapro.2016.08.002
|
[16] |
A.A. Deribas, V.M. Kudinov, and F.I. Matveenkov, Effect of the initial parameters on the process of wave formation in explosive welding, Combust. Explos. Shock Waves, 3(1967), No. 4, p. 344.
|
[17] |
N. Zhang, W.X. Wang, X.Q. Cao, and J.Q. Wu, The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding, Mater. Des., 65(2015), p. 1100. doi: 10.1016/j.matdes.2014.08.025
|
[18] |
Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate, Mater. Sci. Eng. A, 527(2010), No. 9, p. 2241. doi: 10.1016/j.msea.2009.12.007
|
[19] |
D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, Z. Szulc, P. Zieba, and J. Wojewoda-Budka, Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints, J. Mater. Eng. Perform., 25(2016), No. 8, p. 3211. doi: 10.1007/s11665-016-1978-7
|
[20] |
D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Mater. Des., 91(2016), p. 80. doi: 10.1016/j.matdes.2015.11.087
|
[21] |
H.R.Z. Rajani and S.A.A.A. Mousavi, The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate, Mater. Sci. Eng. A, 556(2012), p. 454. doi: 10.1016/j.msea.2012.07.012
|
[22] |
C. Borchers, M. Lenz, M. Deutges, H. Klein, F. Gärtner, M. Hammerschmidt, and H. Kreye, Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding, Mater. Des., 89(2016), p. 369. doi: 10.1016/j.matdes.2015.09.164
|
[23] |
B. Gulenc, Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method, Mater. Des., 29(2008), No. 1, p. 275. doi: 10.1016/j.matdes.2006.11.001
|
[24] |
S.A.A.A. Mousavi and S.T.S. Al-Hassani, Finite element simulation of explosively-driven plate impact with application to explosive welding, Mater. Des., 29(2008), No. 1, p. 1. doi: 10.1016/j.matdes.2006.12.012
|
[25] |
A.A.A. Mousavi and S.T.S. Al-Hassani, Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding, J. Mech. Phys. Solids, 53(2005), No. 11, p. 2501. doi: 10.1016/j.jmps.2005.06.001
|
[26] |
D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, and J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing, Mater. Des., 130(2017), p. 120. doi: 10.1016/j.matdes.2017.05.051
|
[27] |
P.W. Chen, J.R. Feng, Q. Zhou, E.F. An, J.B. Li, Y. Yuan, and S.L. Ou, Investigation on the explosive welding of 1100 aluminum alloy and AZ31 magnesium alloy, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2635. doi: 10.1007/s11665-016-2088-2
|
[28] |
M. Acarer, B. Gülenç, and F. Findik, The influence of some factors on steel/steel bonding quality on there characteristics of explosive welding joints, J. Mater. Sci., 39(2004), No. 21, p. 6457. doi: 10.1023/B:JMSC.0000044883.33007.20
|
[29] |
Y. Kaya and N. Kahraman, An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel, Mater. Des., 52(2013), p. 367. doi: 10.1016/j.matdes.2013.05.033
|
[30] |
A.S. Bahrani, T.J. Black, and B. Crossland, The mechanics of wave formation in explosive welding, Proc. R. Soc. Lond. A, 296(1967), p. 123. doi: 10.1098/rspa.1967.0010
|
[31] |
Q.L. Chu, M. Zhang, J.H. Li, and C. Yan, Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding, Mater. Sci. Eng. A, 689(2017), p. 323. doi: 10.1016/j.msea.2017.02.075
|
[32] |
S.Y. Chen, Z.W. Wu, K.X. Liu, X.J. Li, N. Luo, and G.X. Lu, Atomic diffusion behavior in Cu–Al explosive welding process, J. Appl. Phys., 113(2013), No. 4, art. No. 044901. doi: 10.1063/1.4775788
|
[33] |
T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, R.S. Xie, and Y. Wei, Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate, Acta Metall. Sinica Engl. Lett., 30(2017), No. 10, p. 983. doi: 10.1007/s40195-017-0628-x
|