留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  909
  • HTML全文浏览量:  264
  • PDF下载量:  22
  • 被引次数: 0
Tingting Zhang, Wenxian Wang, Jie Zhang, and Zhifeng Yan, Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1237-1248. https://doi.org/10.1007/s12613-020-2240-8
Cite this article as:
Tingting Zhang, Wenxian Wang, Jie Zhang, and Zhifeng Yan, Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1237-1248. https://doi.org/10.1007/s12613-020-2240-8
引用本文 PDF XML SpringerLink
研究论文

H68/AZ31B复合板连接界面接合形貌及力学性能

  • 通讯作者:

    张婷婷    E-mail: zhangtingting@tyut.edu.cn

文章亮点

  • (1) 提出采用爆炸焊接方法制备H68/AZ31B复合板。
  • (2) 发现并表征了H68/AZ31B复合板“类波形”连接界面的形成原因及界面微区组织性能。
  • (3) 表征并阐释了爆炸冲击载荷作用下H68/AZ31B复合板近界面微区组织演变特征。
  • 镁/铜合金金属层状复合板兼具镁合金轻质高强和铜合金耐蚀性优及导电性好的特点,属于结构和功能与一体的复合材料。本文提出采用爆炸焊接方法制备H68/AZ31B复合板,并对其连接界面形貌、微观组织形貌特征及界面微区力学性能进行系统表征分析。对界面区组织进行EDS和TEM分析研究发现,其连接界面过渡区有三部分典型特征:1)靠近H68铜合金侧的扩散层组织;2)局部金属熔化的凝固结晶组织,其组织成分包括Cu、CuZn2和α-Mg;3)靠近AZ31B镁合金侧的大塑性变形区;对近界面区的组织进行EBSD分析发现,H68铜合金侧的组织呈现混合孪晶组织的多边形规则晶粒形貌,而靠近AZ31B镁合金侧的组织呈现细小的等轴再结晶晶粒形貌;采用纳米压痕对连接界面过渡区进行测试表征发现,过渡区组织硬度远高于两侧基体的硬度。综合分析发现,爆炸焊接H68/AZ31B复合板连接界面的接合机理可以归纳为两侧基体金属合金的互扩散和界面微区金属局部熔化凝固结晶的冶金结合机理。
  • Research Article

    Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate

    + Author Affiliations
    • Interfacial bonding, microstructures, and mechanical properties of an explosively-welded H68/AZ31B clad plate were systematically studied. According to the results, the bonding interface demonstrated a “wavy-like” structure containing three typical zones/layers: (1) diffusion layer adjacent to the H68 brass plate; (2) solidification layer of melted metals at the interface; (3) a layer at the side of AZ31B alloy that experienced severe deformation. Mixed copper, CuZn2, and α-Mg phases were observed in the melted-solidification layer. Regular polygonal grains with twins were found at the H68 alloy side, while fine equiaxed grains were found at the AZ31B alloy side near the interface due to recrystallization. Nanoindentation results revealed the formation of brittle intermetallic CuZn2 phases at the bonding interface. The interface was bonded well through metallurgical reactions due to diffusion of Cu, Zn, and Mg atoms across the interface and metallurgic reaction of partially melted H68 and AZ31B alloys.
    • loading
    • [1]
      L.M. Liu, S.X. Wang, and M.L. Zhu, Study on TIG welding of dissimilar Mg alloy and Cu with Fe as interlayer, Sci. Technol. Weld. Joining, 11(2006), No. 5, p. 523. doi: 10.1179/174329306X122794
      [2]
      C.W. Tan, W.X. He, X.T. Gong, L.Q. Li, and J.C. Feng, Influence of laser power on microstructure and mechanical properties of fiber laser-tungsten inert gas hybrid welded Mg/Cu dissimilar joints, Mater. Des., 78(2015), p. 51. doi: 10.1016/j.matdes.2015.04.022
      [3]
      D.X. Ren and L.M. Liu, Interface microstructure and mechanical properties of arc spot welding Mg–steel dissimilar joint with Cu interlayer, Mater. Des., 59(2014), p. 369. doi: 10.1016/j.matdes.2014.03.006
      [4]
      B. Arcot, C. Cabral, J.M.E. Harper, and S.P. Murarka, Intermetallic reactions between copper and magnesium as an adhesion/barrier layer, MRS Online Proc. Lib., 225(1991), No. 1, p. 231.
      [5]
      G. Mahendran, V. Balasubramanian, and T. Senthilvelan, Influences of diffusion bonding process parameters on bond characteristics of Mg–Cu dissimilar joints, Trans. Nonferrous Met. Soc. China, 20(2010), No. 6, p. 997. doi: 10.1016/S1003-6326(09)60248-X
      [6]
      A. Macwan and D.L. Chen, Microstructure and mechanical properties of ultrasonic spot welded copper-to-magnesium alloy joints, Mater. Des., 84(2015), p. 261. doi: 10.1016/j.matdes.2015.06.104
      [7]
      A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, and I. Galvão, Effect of explosive mixture on quality of explosive welds of copper to aluminium, Mater. Des., 95(2016), p. 256. doi: 10.1016/j.matdes.2016.01.116
      [8]
      G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvão, and A. Loureiro, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds, Mater. Des., 122(2017), p. 172. doi: 10.1016/j.matdes.2017.02.087
      [9]
      T.T. Zhang, W.X. Wang, W. Zhang, Y. Wei, X.Q. Cao, Z.F. Yan, and J. Zhou, Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding, J. Alloys Compd., 735(2018), p. 1759. doi: 10.1016/j.jallcom.2017.11.285
      [10]
      I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, and A.M. Jorge, High cooling rates and metastable phases at the interfaces of explosively welded materials, Acta Mater., 135(2017), p. 277. doi: 10.1016/j.actamat.2017.06.038
      [11]
      F. Findik, Recent developments in explosive welding, Mater. Des., 32(2011), No. 3, p. 1081. doi: 10.1016/j.matdes.2010.10.017
      [12]
      X.D. Yuan, W.X. Wang, X.Q. Cao, T.T. Zhang, R.S. Xie, and R.F. Liu, Numerical study on the interfacial behavior of Mg/Al plate in explosive/impact welding, Sci. Eng. Compos. Mater., 24(2017), No. 4, p. 581. doi: 10.1515/secm-2015-0316
      [13]
      R.F. Liu, W.X. Wang, T.T. Zhang, and X.D. Yuan, Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding, Sci. Eng. Compos. Mater., 24(2017), No. 6, p. 833. doi: 10.1515/secm-2015-0491
      [14]
      X. Wang, Y.Y. Zheng, H.X. Liu, Z.B. Shen, Y. Hu, W. Li, Y.Y. Gao, and C. Guo, Numerical study of the mechanism of explosive/impact welding using Smoothed Particle Hydrodynamics method, Mater. Des., 35(2012), p. 210. doi: 10.1016/j.matdes.2011.09.047
      [15]
      Y. Aizawa, J. Nishiwaki, Y. Harada, S. Muraishi, and S. Kumai, Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces, J. Manuf. Processes, 24(2016), p. 100. doi: 10.1016/j.jmapro.2016.08.002
      [16]
      A.A. Deribas, V.M. Kudinov, and F.I. Matveenkov, Effect of the initial parameters on the process of wave formation in explosive welding, Combust. Explos. Shock Waves, 3(1967), No. 4, p. 344.
      [17]
      N. Zhang, W.X. Wang, X.Q. Cao, and J.Q. Wu, The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding, Mater. Des., 65(2015), p. 1100. doi: 10.1016/j.matdes.2014.08.025
      [18]
      Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate, Mater. Sci. Eng. A, 527(2010), No. 9, p. 2241. doi: 10.1016/j.msea.2009.12.007
      [19]
      D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, Z. Szulc, P. Zieba, and J. Wojewoda-Budka, Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints, J. Mater. Eng. Perform., 25(2016), No. 8, p. 3211. doi: 10.1007/s11665-016-1978-7
      [20]
      D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Mater. Des., 91(2016), p. 80. doi: 10.1016/j.matdes.2015.11.087
      [21]
      H.R.Z. Rajani and S.A.A.A. Mousavi, The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate, Mater. Sci. Eng. A, 556(2012), p. 454. doi: 10.1016/j.msea.2012.07.012
      [22]
      C. Borchers, M. Lenz, M. Deutges, H. Klein, F. Gärtner, M. Hammerschmidt, and H. Kreye, Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding, Mater. Des., 89(2016), p. 369. doi: 10.1016/j.matdes.2015.09.164
      [23]
      B. Gulenc, Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method, Mater. Des., 29(2008), No. 1, p. 275. doi: 10.1016/j.matdes.2006.11.001
      [24]
      S.A.A.A. Mousavi and S.T.S. Al-Hassani, Finite element simulation of explosively-driven plate impact with application to explosive welding, Mater. Des., 29(2008), No. 1, p. 1. doi: 10.1016/j.matdes.2006.12.012
      [25]
      A.A.A. Mousavi and S.T.S. Al-Hassani, Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding, J. Mech. Phys. Solids, 53(2005), No. 11, p. 2501. doi: 10.1016/j.jmps.2005.06.001
      [26]
      D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, and J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing, Mater. Des., 130(2017), p. 120. doi: 10.1016/j.matdes.2017.05.051
      [27]
      P.W. Chen, J.R. Feng, Q. Zhou, E.F. An, J.B. Li, Y. Yuan, and S.L. Ou, Investigation on the explosive welding of 1100 aluminum alloy and AZ31 magnesium alloy, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2635. doi: 10.1007/s11665-016-2088-2
      [28]
      M. Acarer, B. Gülenç, and F. Findik, The influence of some factors on steel/steel bonding quality on there characteristics of explosive welding joints, J. Mater. Sci., 39(2004), No. 21, p. 6457. doi: 10.1023/B:JMSC.0000044883.33007.20
      [29]
      Y. Kaya and N. Kahraman, An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel, Mater. Des., 52(2013), p. 367. doi: 10.1016/j.matdes.2013.05.033
      [30]
      A.S. Bahrani, T.J. Black, and B. Crossland, The mechanics of wave formation in explosive welding, Proc. R. Soc. Lond. A, 296(1967), p. 123. doi: 10.1098/rspa.1967.0010
      [31]
      Q.L. Chu, M. Zhang, J.H. Li, and C. Yan, Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding, Mater. Sci. Eng. A, 689(2017), p. 323. doi: 10.1016/j.msea.2017.02.075
      [32]
      S.Y. Chen, Z.W. Wu, K.X. Liu, X.J. Li, N. Luo, and G.X. Lu, Atomic diffusion behavior in Cu–Al explosive welding process, J. Appl. Phys., 113(2013), No. 4, art. No. 044901. doi: 10.1063/1.4775788
      [33]
      T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, R.S. Xie, and Y. Wei, Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate, Acta Metall. Sinica Engl. Lett., 30(2017), No. 10, p. 983. doi: 10.1007/s40195-017-0628-x

    Catalog


    • /

      返回文章
      返回