Cite this article as: |
Mahmut Can Şenel, Yusuf Kanca, and Mevlüt Gürbüz, Reciprocating sliding wear properties of sintered Al‒B4C composites, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1261-1269. https://doi.org/10.1007/s12613-020-2243-5 |
Mevlüt Gürbüz E-mail: mgurbuz@omu.edu.tr
[1] |
T. Rajmohan and K. Palanikumar, Optimization of machining parameters for multi-performance characteristics in drilling hybrid metal matrix composites, J. Compos. Mater., 46(2012), No. 7, p. 869. doi: 10.1177/0021998311412635
|
[2] |
A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino, An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy, J. Mater. Eng. Perform., 26(2017), No. 3, p. 993. doi: 10.1007/s11665-017-2522-0
|
[3] |
A. Alizadeh, E. Taheri-Nassaj and H.R. Baharvandi, Preparation and investigation of Al–4 wt % B4C nanocomposite powders using mechanical milling, Bull. Mater. Sci., 34(2011), No. 5, p. 1039. doi: 10.1007/s12034-011-0158-5
|
[4] |
O.D. Neikow, S.S. Naboychenko, and G. Dawson, Handbook of Non-Ferrous Metal Powders – Technologies and Applications, 2nd ed., Elsevier, 2009.
|
[5] |
B. Ramesh and T. Senthilvelan, Formability characteristics of aluminium based composites a review, Int. J. Eng. Technol., 2(2010), No. 1, p. 1. doi: 10.7763/IJET.2010.V2.91
|
[6] |
G.S. Hanumanth and G.A. Irons, Particle incorporation by melt stirring for the production of metal-matrix composites, J. Mater. Sci., 28(1993), p. 2459. doi: 10.1007/BF01151680
|
[7] |
Y. Sahin and S. Murphy, The effect of fibre orientation on the dry sliding wear of borsic-reinforced 2014 Al alloy, J. Mater. Sci., 31(1996), No. 20, p. 5399. doi: 10.1007/BF01159309
|
[8] |
M. Kok, Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, J. Mater. Process. Technol., 161(2005), No. 3, p. 381. doi: 10.1016/j.jmatprotec.2004.07.068
|
[9] |
K.K. Chawla, Composite Materials, Springer, New York, 2006.
|
[10] |
D.K. Koli, G. Agnihotri, and R. Purohit, Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields, Mater. Today-Proc., 2(2015), No. 4-5, p. 3032. doi: 10.1016/j.matpr.2015.07.290
|
[11] |
A.J. Macke, B.F. Schultz, and P.K. Rohatgi, Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance, Adv. Mater. Processes, 170(2012), No. 3, p. 19.
|
[12] |
J.K. Chen and I.S. Huang, Thermal properties of aluminum–graphite composites by powder metallurgy, Composites Part B, 44(2013), No. 1, p. 698. doi: 10.1016/j.compositesb.2012.01.083
|
[13] |
T.M. Lillo, Enhancing ductility of Al6061+10 wt.% B4C through equal-channel angular extrusion processing, Mater. Sci. Eng. A, 410-411(2005), p. 443. doi: 10.1016/j.msea.2005.08.093
|
[14] |
H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, and S.R. Nutt, Microstructural investigation on B4C/Al-7093 composite, Mater. Sci. Eng. A, 297(2001), No. 1-2, p. 94. doi: 10.1016/S0921-5093(00)01254-5
|
[15] |
V.M. Ravindranath, G.S. Shiva Shankar, S. Basavarajappa, and N.G. Siddesh Kumar, Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles, Mater. Today-Proc., 4(2017), No. 10, p. 11163. doi: 10.1016/j.matpr.2017.08.082
|
[16] |
W. Xue, L.T. Jiang, B. Zhang, D. Jing, T. He, G.Q. Chen, Z.Y. Xiu, and G.H. Wu, Quantitative analysis of the effects of particle content and aging temperature on aging behavior in B4C/6061Al composites, Mater. Charact., 163(2020), art. No. 110305. doi: 10.1016/j.matchar.2020.110305
|
[17] |
Z.L. Chao, T.T. Sun, L.T. Jiang, Z.S. Zhou, G.Q. Chen, Q.Z, and G.H. Wu, Ballistic behavior and microstructure evolution of B4C/AA2024 composites, Ceram. Int., 45(2019), No. 16, p. 20539. doi: 10.1016/j.ceramint.2019.07.033
|
[18] |
Z.L. Chao, L.T. Jiang, G.Q. Chen, J. Qiao, Q. Z, Z.H. Yu, Y.F. Cao, and G.H. Wu, The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction, Composites Part B, 161(2019), p. 627. doi: 10.1016/j.compositesb.2018.12.147
|
[19] |
N. Radhika, J. Sasikumar, J.L. Sylesh, and R. Kishore, Dry reciprocating wear and frictional behaviour of B4C reinforced functionally graded and homogenous aluminium matrix composites, J. Mater. Res. Technol., 9(2020), No. 2, p. 1578.
|
[20] |
D. Patidar and R.S. Rana, Effect of B4C particle reinforcement on the various properties of aluminium matrix composites: a survey paper, Mater. Today-Proc., 4(2017), No. 2, p. 2981. doi: 10.1016/j.matpr.2017.02.180
|
[21] |
N. Senthilkumar, T. Tamizharasan, and M. Anbarasan, Mechanical characterization and tribological behaviour of Al–Gr–B4C metal matrix composite prepared by stir casting technique, J. Adv. Eng. Res., 1(2014), No. 1, p. 48.
|
[22] |
N. Yuvaraj, S. Aravindan, and Vipin, Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization, J. Mater. Res. Technol., 4(2015), No. 4, p. 398. doi: 10.1016/j.jmrt.2015.02.006
|
[23] |
M.C. Şenel and M. Gurbuz, Investigation on mechanical properties and microstructure of B4C/graphene binary particles reinforced aluminum hybrid composites, Met. Mater. Int., 24(2021), p. 2438. doi: 10.1007/s12540-019-00592-w
|
[24] |
C. Gode, Mechanical properties of hot pressed SiCp and B4Cp/Alumix 123 composites alloyed with minor Zr, Composites Part B, 54(2013), p. 34. doi: 10.1016/j.compositesb.2013.04.068
|
[25] |
A. Canakci, Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites, J. Mater. Sci., 46(2011), No. 8, p. 2805. doi: 10.1007/s10853-010-5156-2
|
[26] |
C.S. Ramesh, R. Keshavamurthy, and G.J. Naveen, Effect of extrusion ratio on wear behaviour of hot extruded Al6061–SiCp (Ni–P coated) composites, Wear, 271(2011), No. 9-10, p. 1868. doi: 10.1016/j.wear.2010.12.078
|
[27] |
K.R. Suresh, H.B. Niranjan, P.M. Jebaraj, and M.P. Chowdiah, Tensile and wear properties of aluminum composites, Wear, 255(2003), No. 1-6, p. 638. doi: 10.1016/S0043-1648(03)00292-8
|
[28] |
G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986.
|
[29] |
M.C. Şenel and M. Gürbüz, Microstructure and wear behaviour of graphene-Si3N4 binary particle reinforced aluminium hybrid composites, Bull. Mater. Sci., 43(2020), No. 1, art. No. 148. doi: 10.1007/s12034-020-02124-4
|
[30] |
V.R. Rajeev, D.K. Dwivedi, and S.C. Jain, Effect of experimental parameters on reciprocating wear behavior of Al-Si-SiCp composites under dry condition, Tribol. Online, 4(2009), No. 5, p. 115. doi: 10.2474/trol.4.115
|
[31] |
M.C. Şenel, M. Gürbüz, and E. Koç, Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets, Mater. Sci. Technol., 34(2018), No. 16, p. 1980. doi: 10.1080/02670836.2018.1501839
|
[32] |
K. Halil, O. İsmail, D. Sibel, and Ç. Ramazan, Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy, J. Mater. Res. Technol., 8(2019), No. 6, p. 5348. doi: 10.1016/j.jmrt.2019.09.002
|
[33] |
S. Jamale and B.V.M. Kumar, Sintering and sliding wear studies of B4C‒SiC composites, Int. J. Refract. Met. Hater Mater., 87(2020), art. No. 105124. doi: 10.1016/j.ijrmhm.2019.105124
|
[34] |
G.Y. Deng, A.K. Tieu, X.D. Lan, L.H. Su, L. Wang, Q. Zhu, and H.T. Zhu, Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy, Tribol. Int., 144(2020), art. No. 106116. doi: 10.1016/j.triboint.2019.106116
|
[35] |
Z. Wang, K. Georgarakis, W.W. Zhang, K.G. Prashanth, J. Eckert, and S. Scudino, Reciprocating sliding wear behavior of high-strength nanocrystalline Al84Ni7Gd6Co3 alloys, Wear, 382-383(2017), p. 78. doi: 10.1016/j.wear.2017.04.013
|
[36] |
V.R. Rajeev, D.K. Dwivedi, and S.C. Jain, Dry reciprocating wear of Al–Si–SiCp composites: A statistical analysis, Tribol. Int., 43(2010), No. 8, p. 1532. doi: 10.1016/j.triboint.2010.02.014
|
[37] |
Y.Q. Liu, Z. Han, and H.T. Cong, Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite, Wear, 268(2010), No. 7-8, p. 976. doi: 10.1016/j.wear.2009.12.027
|
[38] |
N.M. Kumar, S.S. Kumaran, and L.A. Kumaraswamidhas, Wear behaviour of Al 261 8 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures, Alex. Eng. J., 55(2016), No. 1, p. 19.
|
[39] |
H.G.P. Kumar and M.A. Xavior, Fatigue and wear behavior of Al6061–graphene composites synthesized by powder metallurgy, Trans. Indian Inst. Met., 69(2016), No. 2, p. 415. doi: 10.1007/s12666-015-0780-9
|