留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(11)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  1475
  • HTML全文浏览量:  544
  • PDF下载量:  98
  • 被引次数: 0
Yonghao Di, Fang Yuan, Xiaotian Ning, Hongwei Jia, Yangyu Liu, Xiangwei Zhang, Chunquan Li, Shuilin Zheng,  and Zhiming Sun, Functionalization of diatomite with glycine and amino silane for formaldehyde removal, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 356-367. https://doi.org/10.1007/s12613-020-2245-3
Cite this article as:
Yonghao Di, Fang Yuan, Xiaotian Ning, Hongwei Jia, Yangyu Liu, Xiangwei Zhang, Chunquan Li, Shuilin Zheng,  and Zhiming Sun, Functionalization of diatomite with glycine and amino silane for formaldehyde removal, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 356-367. https://doi.org/10.1007/s12613-020-2245-3
引用本文 PDF XML SpringerLink
研究论文

甘氨酸和氨基硅烷改性硅藻土吸附甲醛性能与机理研究

文章亮点

  • (1) 甘氨酸和氨基硅烷成功应用于硅藻土的表面改性。
  • (2) 系统研究了甘氨酸和氨基硅烷改性硅藻土吸附甲醛的性能与机理。
  • (3) 为室内甲醛净化、空气质量改善提供了新的材料与方法。
  • 利用液相化学包覆法成功合成了3-氨丙基三乙氧基硅烷(APTS)和甘氨酸(GLY)改性的两种氨基改性硅藻土(DE)复合材料(即:APTS/DE和GLY/DE),并对气相甲醛进行了高效吸附研究。通过实验,确定了两种复合材料的最佳制备条件,并对其微观结构和形貌进行了表征和分析。通过系列甲醛吸附实验,对两种氨基改性硅藻土复合材料的甲醛吸附性能进行了对比,结果表明:准二级动力学和朗缪尔等温吸附模型能准确地描述吸附过程;在20℃时,最佳条件下制备的APTS/DE和GLY/DE复合材料对气相甲醛的最大吸附量分别为5.83 mg·g−1和1.14 mg·g−1。复合材料的热力学参数计算表明,该吸附过程是自发且放热的;在硅藻土表面接枝的丰富氨基及其引发的席夫碱反应对复合材料高效吸附甲醛起到了关键作用。

  • Research Article

    Functionalization of diatomite with glycine and amino silane for formaldehyde removal

    + Author Affiliations
    • Two amino-functionalized diatomite (DE) composites modified by 3-aminopropyltriethoxysilane (APTS) or glycine (GLY) (i.e., APTS/DE and GLY/DE) were successfully synthesized via the wet chemical method for the time- and cost-efficient removal of indoor formaldehyde (HCHO). First, the optimal preparation conditions of the two composites were determined, and then their microstructures and morphologies were characterized and analyzed. Batch HCHO adsorption experiments with the two types of amino-modified DE composites were also conducted to compare their adsorption properties. Experimental results indicated that the pseudo-second-order kinetic and Langmuir isotherm models could well describe the adsorption process, and the maximum adsorption capacities of APTS/DE and GLY/DE prepared under optimal conditions at 20°C were 5.83 and 1.14 mg·g−1, respectively. The thermodynamic parameters of the composites indicated that the adsorption process was spontaneous and exothermic. The abundant amine groups grafted on the surface of DE were derived from the Schiff base reaction and were essential for the high-efficient adsorption performance toward HCHO.

    • loading
    • [1]
      Z.H. Xu, J.G. Yu, and M. Jaroniec, Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt, Appl. Catal. B, 163(2015), p. 306. doi: 10.1016/j.apcatb.2014.08.017
      [2]
      F. Liu, X.P. Liu, J. Shen, A. Bahi, S.Y. Zhang, L. Wan, and F. Ko, The role of oxygen vacancies on Pt/NaInO2 catalyst in improving formaldehyde oxidation at ambient condition, Chem. Eng. J., 395(2020), art. No. 125131. doi: 10.1016/j.cej.2020.125131
      [3]
      X.F. Tang, Y.G. Li, X.M. Huang, Y. D. Xu, H.Q. Zhu, J.G. Wang, and W.J. Shen, MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature, Appl. Catal. B, 62(2006), No. 3-4, p. 265. doi: 10.1016/j.apcatb.2005.08.004
      [4]
      L.H. Nie, J.G. Yu, X.Y. Li, B. Cheng, G. Liu, and M. Jaroniec, Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde, Environ. Sci. Technol., 47(2013), No. 6, p. 2777. doi: 10.1021/es3045949
      [5]
      X.X. Zhu, W. Chen, K.L. Wu, H.Y. Li, M. Fu, Q.Y. Liu, and X. Zhang, A colorimetric sensor of H2O2 based on Co3O4-montmorillonite nanocomposites with peroxidase activity, New J. Chem., 42(2018), No. 2, p. 1501. doi: 10.1039/C7NJ03880A
      [6]
      Y. Ma and G.K. Zhang, Sepiolite nanofiber-supported platinum nanoparticle catalysts toward the catalytic oxidation of formaldehyde at ambient temperature: Efficient and stable performance and mechanism, Chem. Eng. J., 288(2016), p. 70. doi: 10.1016/j.cej.2015.11.077
      [7]
      J.J. Pei, Y.H. Yin, and J.J. Liu, Long-term indoor gas pollutant monitor of new dormitories with natural ventilation, Energy Build., 129(2016), p. 514. doi: 10.1016/j.enbuild.2016.08.033
      [8]
      M. Wickenheisser, A. Herbst, R. Tannert, B. Milow, and C. Janiak, Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe,Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications, Microporous Mesoporous Mater., 215(2015), p. 143. doi: 10.1016/j.micromeso.2015.05.017
      [9]
      X.L. Hu, C.Q. Li, Z.M. Sun, J.Y. Song, and S.L. Zheng, Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light, Build. Environ., 168(2020), art. No. 106481. doi: 10.1016/j.buildenv.2019.106481
      [10]
      B. Zhu, L.Y. Zhang, M. Li, Y. Yan, X.M. Zhang, and Y.M. Zhu, High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts, Chem. Eng. J., 381(2020), art. No. 122599. doi: 10.1016/j.cej.2019.122599
      [11]
      Y.C. Huang, H.X. Hu, S.X. Wang, M.S. Balogun, H.B. Ji, and Y.X. Tong, Low concentration nitric acid facilitate rapid electron-hole separation in vacancy-rich bismuth oxyiodide for photo-thermo-synergistic oxidation of formaldehyde, Appl. Catal. B, 218(2017), p. 700. doi: 10.1016/j.apcatb.2017.07.028
      [12]
      P. Kowalczyk, P.A. Gauden, M. Wiśniewski, A.P. Terzyk, S. Furmaniak, A. Burian, K. Kaneko, and A.V. Neimark, Atomic-scale molecular models of oxidized activated carbon fibre nanoregions: Examining the effects of oxygen functionalities on wet formaldehyde adsorption, Carbon, 165(2020), p. 67. doi: 10.1016/j.carbon.2020.04.025
      [13]
      S. Ashtiani, M. Khoshnamvand, A. Shaliutina-Kolešová, D. Bouša, Z. Sofer, and K. Friess, Co0.5Ni0.5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal–organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification, Chemosphere, 255(2020), art. No. 126966. doi: 10.1016/j.chemosphere.2020.126966
      [14]
      N. Goyal, P. Gao, Z. Wang, S.W. Cheng, Y.S. Ok, G. Li, and L.Y. Liu, Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium, J. Hazard. Mater., 392(2020), art. No. 122494. doi: 10.1016/j.jhazmat.2020.122494
      [15]
      N.T. Nguyen, T.H. Dao, T.T. Truong, T.M.T. Nguyen, and T.D. Pham, Adsorption characteristic of ciprofloxacin antibiotic onto synthesized alpha alumina nanoparticles with surface modification by polyanion, J. Mol. Liq., 309(2020), art. No. 113150. doi: 10.1016/j.molliq.2020.113150
      [16]
      Y.Y. Liu, H.W. Jia, C.Q. Li, Z.M. Sun, Y.T. Pan, and S.L. Zheng, Efficient removal of gaseous formaldehyde by amine-modified diatomite: A combined experimental and density functional theory study, Environ. Sci. Pollut. Res., 26(2019), No. 24, p. 25130. doi: 10.1007/s11356-019-05758-y
      [17]
      H. Yang, X. Sun, S.X. Liu, J.L. Liu, and X.M. Ren, Low-cost and environmental-friendly kaolinite-intercalated hybrid material showing fast formaldehyde adsorbing behavior, ChemistrySelect, 1(2016), No. 10, p. 2181. doi: 10.1002/slct.201600217
      [18]
      G.F. Wang, Y.F. Xi, C. Lian, Z.M. Sun, and S.L. Zheng, Simultaneous detoxification of polar aflatoxin B1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites, J. Hazard. Mater., 364(2019), p. 227. doi: 10.1016/j.jhazmat.2018.09.071
      [19]
      Y.Y. Liu, H.W. Jia, Z.M. Sun, Y.T. Pan, G.X. Zhang, and S.L. Zheng, High-efficiency removal of gaseous HCHO by amine functionalized natural opoka, Chem. Phys. Lett., 722(2019), p. 32. doi: 10.1016/j.cplett.2019.02.044
      [20]
      G.X. Zhang, Z.M. Sun, Y.W. Duan, R.X. Ma, and S.L. Zheng, Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde, Appl. Surf. Sci., 412(2017), p. 105. doi: 10.1016/j.apsusc.2017.03.198
      [21]
      Z.Y. Han, C. Wang, X.H. Zou, T.H. Chen, S.W. Dong, Y. Zhao, J.J. Xie, and H.B. Liu, Diatomite-supported birnessite-type MnO2 catalytic oxidation of formaldehyde: Preparation, performance and mechanism, Appl. Surf. Sci., 502(2020), art. No. 144201. doi: 10.1016/j.apsusc.2019.144201
      [22]
      M.Y. Liu, L. Zheng, G.L. Lin, L.F. Ni, and X.C. Song, Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: Natural porous diatomite as photocatalyst support and dominant facets regulator, Adv. Powder Technol., 31(2020), No. 1, p. 339. doi: 10.1016/j.apt.2019.10.026
      [23]
      A.M. Ewlad-Ahmed, M.A. Morris, S.V. Patwardhan, and L.T. Gibson, Removal of formaldehyde from air using functionalized silica supports, Environ. Sci. Technol., 46(2012), No. 24, p. 13354. doi: 10.1021/es303886q
      [24]
      K. Vellingiri, Y.X. Deng, K.H. Kim, J.J. Jiang, T. Kim, J. Shang, W.S. Ahn, D. Kukkar, and D.W. Boukhvalov, Amine-functionalized metal–organic frameworks and covalent organic polymers as potential sorbents for removal of formaldehyde in aqueous phase: Experimental versus theoretical study, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 1426. doi: 10.1021/acsami.8b17479
      [25]
      A. Nomura and C.W. Jones, Amine-functionalized porous silicas as adsorbents for aldehyde abatement, ACS Appl. Mater. Interfaces, 5(2013), No. 12, p. 5569. doi: 10.1021/am400810s
      [26]
      E. Vilarrasa-García, J.A. Cecilia, M. Bastos-Neto, C.L. Cavalcante, D.C.S. Azevedo, and E. Rodríguez-Castellón, Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation, Appl. Surf. Sci., 410(2017), p. 315. doi: 10.1016/j.apsusc.2017.03.054
      [27]
      J. Cheng, X.J. Gu, P.L. Liu, H. Zhang, L.L. Ma, and H.Q. Su, Achieving efficient room-temperature catalytic H2 evolution from formic acid through atomically controlling the chemical environment of bimetallic nanoparticles immobilized by isoreticular amine-functionalized metal–organic frameworks, Appl. Catal. B, 218(2017), p. 460. doi: 10.1016/j.apcatb.2017.06.084
      [28]
      S.M. Mirabedini, M. Esfandeh, R.R. Farnood, and P. Rajabi, Amino-silane surface modification of urea-formaldehyde microcapsules containing linseed oil for improved epoxy matrix compatibility. Part I: Optimizing silane treatment conditions, Prog. Org. Coat., 136(2019), art. No. 105242. doi: 10.1016/j.porgcoat.2019.105242
      [29]
      Y.F. Wu, Y.W. Sun, J. Xiao, X. Wang, and Z. Li, Glycine-modified HKUST-1 with simultaneously enhanced moisture stability and improved adsorption for light hydrocarbons separation, ACS Sustainable Chem. Eng., 7(2019), No. 1, p. 1557. doi: 10.1021/acssuschemeng.8b05321
      [30]
      F. Li, J.F. Ye, L.M. Yang, C.H. Deng, Q. Tian, and B. Yang, Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings, Appl. Surf. Sci., 345(2015), p. 301. doi: 10.1016/j.apsusc.2015.03.189
      [31]
      X.Q. Zhu, B. Guo, J. Fang, T.S. Zhai, Y.N. Wang, G.W. Li, J.Q. Zhang, Z.X. Wei, S. Duhm, X. Guo, M.J. Zhang, and Y.F. Li, Surface modification of ZnO electron transport layers with glycine for efficient inverted non-fullerene polymer solar cells, Org. Electron., 70(2019), p. 25. doi: 10.1016/j.orgel.2019.03.039
      [32]
      F. Yuan, Z.M. Sun, C.Q. Li, Y. Tan, X.W. Zhang, and S.L. Zheng, Multi-component design and in situ synthesis of visible-light-driven SnO2/g-C3N4/diatomite composite for high-efficient photoreduction of Cr(VI) with the aid of citric acid, J. Hazard. Mater., 396(2020), art. No. 122694. doi: 10.1016/j.jhazmat.2020.122694
      [33]
      Z.M. Sun, F. Yuan, X.C. Zhang, R. Zhu, X.Y. Shen, B.Y. Sun, and B. Wang, Design and synthesis of organic rectorite-based composite nanofiber membrane with enhanced adsorption performance for bisphenol A, Environ. Sci. Pollut. Res., 26(2019), No. 28, p. 28860. doi: 10.1007/s11356-019-06069-y
      [34]
      X.Y. Wang, J.M. Sun, Y.F. Zhang, and Y.M. Zhang, Study on the correlation between pore morphology of porous calcium silicate and high-capacity formaldehyde adsorption, Environ. Technol., 42(2021), No. 13, p. 2021. doi: 10.1080/09593330.2019.1687588
      [35]
      K. Vikrant, M. Cho, A. Khan, K.H. Kim, W.S. Ahn, and E.E. Kwon, Adsorption properties of advanced functional materials against gaseous formaldehyde, Environ. Res., 178(2019), art. No. 108672. doi: 10.1016/j.envres.2019.108672
      [36]
      S.C. Hu, Y.C. Chen, X.Z. Lin, A. Shiue, P.H. Huang, Y.C. Chen, S.M. Chang, C.H. Tseng, and B. Zhou, Characterization and adsorption capacity of potassium permanganate used to modify activated carbon filter media for indoor formaldehyde removal, Environ. Sci. Pollut. Res., 25(2018), No. 28, p. 28525. doi: 10.1007/s11356-018-2681-z
      [37]
      C.Q. Su, K.K. Liu, J.C. Zhu, H.Y. Chen, H.L. Li, Z. Zeng, and L.Q. Li, Adsorption effect of nitrogen, sulfur or phosphorus surface functional group on formaldehyde at ambient temperature: Experiments associated with calculations, Chem. Eng. J., 393(2020), art. No. 124729. doi: 10.1016/j.cej.2020.124729
      [38]
      G. de Falco, M. Barczak, F. Montagnaro, and T.J. Bandosz, A new generation of surface active carbon textiles as reactive adsorbents of indoor formaldehyde, ACS Appl. Mater. Interfaces, 10(2018), No. 9, p. 8066. doi: 10.1021/acsami.7b19519
      [39]
      W.J. Yuan, S.P. Zhang, Y.Y. Wu, X.M. Huang, F.H. Tian, S.W. Liu, and C.H. Li, Enhancing the room-temperature catalytic degradation of formaldehyde through constructing surface lewis pairs on carbon-based catalyst, Appl. Catal. B, 272(2020), art. No. 118992. doi: 10.1016/j.apcatb.2020.118992

    Catalog


    • /

      返回文章
      返回