留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 10
Oct.  2021

图(8)

数据统计

分享

计量
  • 文章访问数:  1595
  • HTML全文浏览量:  528
  • PDF下载量:  76
  • 被引次数: 0
Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1603-1610. https://doi.org/10.1007/s12613-020-2247-1
Cite this article as:
Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1603-1610. https://doi.org/10.1007/s12613-020-2247-1
引用本文 PDF XML SpringerLink
研究论文

碳点修饰硅在锂离子电池中的应用研究

  • Research Article

    Carbon dot-modified silicon nanoparticles for lithium-ion batteries

    + Author Affiliations
    • Silicon (Si) particles were functionalized using carbon dots (CDs) to enhance the interaction between the Si particles and the binders. First, CDs rich in polar groups were synthesized using a simple hydrothermal method. Then, CDs were loaded on the Si surface by impregnation to obtain the functionalized Si particles (Si/CDs). The phases and microstructures of the Si/CDs were observed using Fourier-transform infrared reflection, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Si/CDs were used as the active material of the anode for electrochemical performance experiments. The electrochemical performance of the Si/CD electrode was assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge and discharge experiment. The electrodes prepared with Si/CDs showed good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of the Si/CD electrode was 64.0%, which is twice as much as that of pure Si electrode under the same test conditions.

    • loading
    • [1]
      S. Chu, Y. Cui, and N. Liu, The path towards sustainable energy, Nat. Mater., 16(2017), No. 1, p. 16. doi: 10.1038/nmat4834
      [2]
      X.H. Gao, G.R. Li, Y.Y. Xu, Z.L. Hong, C.D. Liang, and Z. Lin, TiO2 microboxes with controlled internal porosity for high-performance lithium storage, Angew. Chem. Int. Ed., 54(2015), No. 48, p. 14331. doi: 10.1002/anie.201506357
      [3]
      W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 1, p. 13. doi: 10.1016/j.jpowsour.2010.07.020
      [4]
      M. Ashuri, Q.R. He, and L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter, Nanoscale, 8(2016), No. 1, p. 74. doi: 10.1039/C5NR05116A
      [5]
      B. Liang, Y.P. Liu, and Y.H. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries, J. Power Sources, 267(2014), p. 469. doi: 10.1016/j.jpowsour.2014.05.096
      [6]
      X.X. Zuo, J. Zhu, P. Müller-Buschbaum, and Y.J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31(2017), p. 113. doi: 10.1016/j.nanoen.2016.11.013
      [7]
      Q.B. Zhang, H.X. Chen, L.L. Luo, B.T. Zhao, H. Luo, X. Han, J.W. Wang, C.M. Wang, Y. Yang, T. Zhu, and M.L. Liu, Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries, Energy Environ. Sci., 11(2018), No. 3, p. 669. doi: 10.1039/C8EE00239H
      [8]
      E. Roduner, Size matters: Why nanomaterials are different, Chem. Soc. Rev, 35(2006), No. 7, p. 583. doi: 10.1039/b502142c
      [9]
      X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6(2012), No. 2, p. 1522. doi: 10.1021/nn204476h
      [10]
      Z.M. Zheng, H.H. Wu, H.X. Chen, Y. Cheng, Q.B. Zhang, Q.S. Xie, L.S. Wang, K.L. Zhang, M.S. Wang, D.L. Peng, and X.C. Zeng, Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries, Nanoscale, 10(2018), No. 47, p. 22203. doi: 10.1039/C8NR07207H
      [11]
      Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545. doi: 10.1021/acsnano.9b08575
      [12]
      X.Y. Zhao and V.P. Lehto, Challenges and prospects of nanosized silicon anodes in lithium-ion batteries, Nanotechnology, 32(2021), No. 4, art. No. 042002. doi: 10.1088/1361-6528/abb850
      [13]
      H. Li, X.J. Huang, L.Q. Chen, Z.G. Wu, and Y. Liang, A high capacity nano-Si composite anode material for lithium rechargeable batteries, Electrochem. Solid-State Lett., 2(1999), No. 11, art. No. 547. doi: 10.1149/1.1390899
      [14]
      C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3(2008), No. 1, p. 31. doi: 10.1038/nnano.2007.411
      [15]
      C.J. Yu, X. Li, T. Ma, J.P. Rong, R.J. Zhang, J. Shaffer, Y.H. An, Q. Liu, B.Q. Wei, and H.Q. Jiang, Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation, Adv. Energy Mater., 2(2012), No. 1, p. 68. doi: 10.1002/aenm.201100634
      [16]
      D.K. Kang, J.A. Corno, J.L. Gole, and H.C. Shin, Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries, J. Electrochem. Soc., 155(2008), No. 4, art. No. A276. doi: 10.1149/1.2836570
      [17]
      A.M. Escamilla-Pérez, A. Roland, S. Giraud, C. Guiraud, H. Virieux, K. Demoulin, Y. Oudart, N. Louvain, and L. Monconduit, Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries, RSC Adv., 9(2019), No. 19, p. 10546. doi: 10.1039/C9RA00437H
      [18]
      Z.X. Xu, J. Yang, T. Zhang, Y.N. Nuli, J.L. Wang, and S.I. Hirano, Silicon microparticle anodes with self-healing multiple network binder, Joule, 2(2018), No. 5, p. 950. doi: 10.1016/j.joule.2018.02.012
      [19]
      T.F. Liu, Q.L. Chu, C. Yan, S.Q. Zhang, Z. Lin, and J. Lu, Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802645. doi: 10.1002/aenm.201802645
      [20]
      S. Choi, T.W. Kwon, A. Coskun, and J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries, Science, 357(2017), No. 6348, p. 279. doi: 10.1126/science.aal4373
      [21]
      Z.H. Li, Y.P. Zhang, T.F. Liu, X.H. Gao, S.Y. Li, M. Ling, C.D. Liang, J.C. Zheng, and Z. Lin, Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries, Adv. Energy Mater., 10(2020), No. 20, art. No. 1903110. doi: 10.1002/aenm.201903110
      [22]
      M. Ling, Y.N. Xu, H. Zhao, X.X. Gu, J.X. Qiu, S. Li, M.Y. Wu, X.Y. Song, C. Yan, G. Liu, and S.Q. Zhang, Dual-functional gum arabic binder for silicon anodes in lithium ion batteries, Nano Energy, 12(2015), p. 178. doi: 10.1016/j.nanoen.2014.12.011
      [23]
      Y.J. Liu, Z.X. Tai, T.F. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z.P. Guo, and H.K. Liu, An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries, Adv. Mater., 29(2017), No. 44, art. No. 1703028. doi: 10.1002/adma.201703028
      [24]
      H. Chen, M. Ling, L. Hencz, H.Y. Ling, G.R. Li, Z. Lin, G. Liu, and S.Q. Zhang, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices, Chem. Rev., 118(2018), No. 18, p. 8936. doi: 10.1021/acs.chemrev.8b00241
      [25]
      H.K. Park, B.S. Kong, and E.S. Oh, Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries, Electrochem. Commun., 13(2011), No. 10, p. 1051. doi: 10.1016/j.elecom.2011.06.034
      [26]
      J.M. Oh, O. Geiculescu, D. DesMarteau, and S. Creager, Ionomer binders can improve discharge rate capability in lithium-ion battery cathodes, J. Electrochem. Soc., 158(2011), No. 2, p. A207. doi: 10.1149/1.3526598
      [27]
      L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, and J.O. Thomas, Influence of carbon black and binder on Li-ion batteries, J. Power Sources, 101(2001), No. 1, p. 1. doi: 10.1016/S0378-7753(01)00481-5
      [28]
      C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z.N. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chem., 5(2013), No. 12, p. 1042. doi: 10.1038/nchem.1802
      [29]
      Y.M. Sun, J. Lopez, H.W. Lee, N. Liu, G.Y. Zheng, C.L. Wu, J. Sun, W. Liu, J.W. Chung, Z.N. Bao, and Y. Cui, A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer, Adv. Mater., 28(2016), No. 12, p. 2455. doi: 10.1002/adma.201504723
      [30]
      Q. Zhang, L.B. Liu, C.G. Pan, and D. Li, Review of recent achievements in self-healing conductive materials and their applications, J. Mater. Sci., 53(2018), No. 1, p. 27. doi: 10.1007/s10853-017-1388-8
      [31]
      Y. Shi, M. Wang, C.B. Ma, Y.Q. Wang, X.P. Li, and G.H. Yu, A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer, Nano Lett., 15(2015), No. 9, p. 6276. doi: 10.1021/acs.nanolett.5b03069
      [32]
      R.W. Nunes, J.R. Martin, and J.F. Johnson, Influence of molecular weight and molecular weight distribution on mechanical properties of polymers, Polym. Eng. Sci., 22(1982), No. 4, p. 205. doi: 10.1002/pen.760220402
      [33]
      D. Maldas and B.V. Kokta, Improving adhesion of wood fiber with polystyrene by the chemical treatment of fiber with a coupling agent and the influence on the mechanical properties of composites, J. Adhes. Sci. Technol., 3(1989), No. 1, p. 529. doi: 10.1163/156856189X00380
      [34]
      A. Baldan, Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment, J. Mater. Sci., 39(2004), No. 1, p. 1. doi: 10.1023/B:JMSC.0000007726.58758.e4
      [35]
      X.L. Zhang, C.B. Wei, Y. Li, and D.S. Yu, Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications, TrAC Trends Anal. Chem., 116(2019), p. 109. doi: 10.1016/j.trac.2019.03.011
      [36]
      S.N. Baker and G.A. Baker, Luminescent carbon nanodots: Emergent nanolights, Angew. Chem. Int. Ed., 49(2010), No. 38, p. 6726. doi: 10.1002/anie.200906623
      [37]
      H.T. Li, Z.H. Kang, Y. Liu, and S.T. Lee, Carbon nanodots: Synthesis, properties and applications, J. Mater. Chem., 22(2012), No. 46, p. 24230. doi: 10.1039/c2jm34690g
      [38]
      S.J. Zhu, Y.B. Song, X.H. Zhao, J.R. Shao, J.H. Zhang, and B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective, Nano Res., 8(2015), No. 2, p. 355. doi: 10.1007/s12274-014-0644-3
      [39]
      S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, and X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation, J. Mater. Chem., 19(2009), No. 4, p. 484. doi: 10.1039/B812943F
      [40]
      S.C. Ray, A. Saha, N.R. Jana, and R. Sarkar, Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application, J. Phys. Chem. C, 113(2009), No. 43, p. 18546. doi: 10.1021/jp905912n
      [41]
      H. Zhou, J. Nanda, S.K. Martha, R.R. Unocic, H.M. Meyer, Y. Sahoo, P. Miskiewicz, and T.F. Albrecht, Role of surface functionality in the electrochemical performance of silicon nanowire anodes for rechargeable lithium batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 10, p. 7607. doi: 10.1021/am500855a
      [42]
      Y.C. Yen, S.C. Chao, H.C. Wu, and N.L. Wu, Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells, J. Electrochem. Soc., 156(2009), No. 2, art. No. A95. doi: 10.1149/1.3032230
      [43]
      S.J. Zhu, Q.N. Meng, L. Wang, J.H. Zhang, Y.B. Song, H. Jin, K. Zhang, H.C. Sun, H.Y. Wang, and B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging, Angew. Chem. Int. Ed., 52(2013), No. 14, p. 3953. doi: 10.1002/anie.201300519
      [44]
      J.X. Song, M.J. Zhou, R. Yi, T. Xu, M.L. Gordin, D.H. Tang, Z.X. Yu, M. Regula, and D.H. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Adv. Funct. Mater., 24(2014), No. 37, p. 5904. doi: 10.1002/adfm.201401269
      [45]
      C. Chen, S.H. Lee, M. Cho, J. Kim, and Y. Lee, Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 4, p. 2658. doi: 10.1021/acsami.5b10673

    Catalog


    • /

      返回文章
      返回