留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  2916
  • HTML全文浏览量:  1056
  • PDF下载量:  61
  • 被引次数: 0
Xiaozhao Ma, Zhilei Xiang, Tao Li, Yilan Chen, Yingying Liu, Ziyong Chen,  and Qun Shu, Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-021-2248-8
Cite this article as:
Xiaozhao Ma, Zhilei Xiang, Tao Li, Yilan Chen, Yingying Liu, Ziyong Chen,  and Qun Shu, Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1596-1607. https://doi.org/10.1007/s12613-021-2248-8
引用本文 PDF XML SpringerLink
研究论文

近 α 耐高温钛合金的显微组织和力学性能在热处理过程中的演变规律

  • 通讯作者:

    陈子勇    E-mail: czy@bjut.edu.cn

  • 耐高温钛合金具有比强度高、比模量高和高温性能优异的优点,主要应用在高性能航空发动机叶片和叶盘,超声速巡航导弹壳体和军用柴油发动机气门等领域。然而,目前对新型耐650℃高温钛合金热处理过程中微纳结构和力学性能演变的研究尚少。本文通过XRD、SEM、EBSD、TEM和拉伸试验等方法研究了热处理过程中合金的显微组织、力学性能和断裂特征的演变规律。研究表明,随固溶温度提升,初生 α 相含量逐渐较小,β 转变组织含量逐渐增加。β 转变组织内部析出大量层片状 α 晶粒, 层片的宽度随固溶温度的提升逐渐增加。锻态合金内部既存在尺寸较大的等轴和棒状硅化物,也析出纳米尺寸的硅化物。元素分析表明,大尺寸硅化物或许为(Ti, Zr, Nb)5Si3 和 (Ti, Zr, Nb)6Si3。热处理后,尺寸较小的棒状硅化物在残余 β 相中析出,它们与 α/β 界面近似为45°。热处理态合金中的残余 β 相呈半连续状。合金经980°C/1 h固溶和700°C/4 h时效处理后表现出最优的室温和高温(650°C)力学性能的匹配。
  • Research Article

    Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys

    + Author Affiliations
    • Evolution laws of microstructures, mechanical properties, and fractographs after different solution temperatures were investigated through various analysis methods. With the increasing solution temperatures, contents of the primary α phase decreased, and contents of transformed β structures increased. Lamellar α grains dominated the characteristics of transformed β structures, and widths of secondary α lamellas increased monotonously. For as-forged alloy, large silicides with equiaxed and rod-like morphologies, and nano-scale silicides were found. Silicides with large sizes might be (Ti, Zr, Nb)5Si3 and (Ti, Zr, Nb)6Si3. Rod-like silicides with small sizes precipitated in retained β phase, exhibiting near 45° angles with α/β boundaries. Retained β phases in as-heat treated alloys were incontinuous. 980STA exhibited an excellent combination of room temperature (RT) and 650°C mechanical properties. Characteristics of fracture surfaces largely depended on the evolutions of microstructures. Meanwhile, silicides promoted the formation of mico-voids.
    • loading
    • [1]
      X.J. Jiang, R. Jing, C.Y. Liu, M.Z. Ma, and R.P. Liu, Structure and mechanical properties of TiZr binary alloy after Al addition, Mater. Sci. Eng. A, 586(2013), p. 301. doi: 10.1016/j.msea.2013.08.029
      [2]
      P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374. doi: 10.1007/s12613-019-1922-6
      [3]
      J.C. Williams and E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775. doi: 10.1016/j.actamat.2003.08.023
      [4]
      L. Yang, B.Y. Wang, J.G. Lin, H.J. Zhao, and W.Y. Ma, Ductile fracture behavior of TA15 titanium alloy at elevated temperatures, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1082. doi: 10.1007/s12613-015-1171-2
      [5]
      R. Boyer, G. Welsch, and E. Collings, Materials Properties Handbook: Titanium Alloys, 1994.
      [6]
      K. Prasad, R. Sarkar, P. Ghosal, D.V.V. Satyanarayana, S.V. Kamat, and T.K. Nandy, Tensile and creep properties of thermomechanically processed boron modified Timetal 834 titanium alloy, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6733. doi: 10.1016/j.msea.2011.05.069
      [7]
      V.K. Chandravanshi, A. Bhattacharjee, S.V. Kamat, and T.K. Nandy, Influence of thermomechanical processing and heat treatment on microstructure, tensile properties and fracture toughness of Ti–1100–0.1B alloy, J. Alloys Compd., 589(2014), p. 336. doi: 10.1016/j.jallcom.2013.11.014
      [8]
      S.A.A. Shams, S. Mirdamadi, S.M. Abbasi, Y. Lee, and C.S. Lee, Coarsening kinetics of primary alpha in a near alpha titanium alloy, J. Alloys Compd., 735(2018), p. 1769. doi: 10.1016/j.jallcom.2017.11.296
      [9]
      Q.J. Wang, J.R. Liu, and R. Yang, High temperature titanium alloys: Status and perspective, J. Aeronaut. Mater., 34(2014), No. 4, p. 1. doi: 10.11868/j.issn.1005-5053.2014.4.001
      [10]
      P.L. Narayana, S.W. Kim, J.K. Hong, N.S. Reddy, and J.T. Yeom, Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C, Mater. Sci. Eng. A, 718(2018), p. 287. doi: 10.1016/j.msea.2018.01.113
      [11]
      T. Li, L.H. Chai, S.H. Shi, et al., Effect of near-isothermal forging temperature on the microstructure and mechanical properties of near α high temperature titanium alloy, Mater. Sci. Forum, 898(2017), p. 579. doi: 10.4028/www.scientific.net/MSF.898.579
      [12]
      P. Han, B.L. Li, J.M. Yin, T. Liu, and Z.R. Nie, Effect of Er on creep properties of a near-α high temperature titanium alloy, Sci. Technol. Eng., 12(2012), No. 17, p. 4124.
      [13]
      X.Z. Ma, L.H. Chai, Y.Y. Liu, et al., TiB whiskers stimulated the dynamic recrystallization behavior, J. Alloys Compd., 812(2020), art. No. 152152. doi: 10.1016/j.jallcom.2019.152152
      [14]
      Z.B. Zhao, Q.J. Wang, J.R. Liu, and R. Yang, Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60, Acta Mater., 131(2017), p. 305. doi: 10.1016/j.actamat.2017.04.007
      [15]
      X.Z. Ma, Z.L. Xiang, M.Z. Ma, Y.P. Cui, W.M. Ren, Z.T. Wang, J.C. Huang, and Z.Y. Chen, Investigation of microstructures, textures, mechanical properties and fracture behaviors of a newly developed near α titanium alloy, Mater. Sci. Eng. A, 775(2020), art. No. 138996. doi: 10.1016/j.msea.2020.138996
      [16]
      S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu, Microstructure and mechanical properties of hot-rolled ZrTiAlV alloys, Mater. Sci. Eng. A, 532(2012), p. 1. doi: 10.1016/j.msea.2011.10.053
      [17]
      Y. Yue, L.Y. Dai, H. Zhong, C.L. Tan, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Enhanced mechanical properties for mill-annealed Ti–20Zr–6.5Al–4V alloy with a fine equiaxed microstructure, Mater. Sci. Eng. A, 678(2016), p. 286. doi: 10.1016/j.msea.2016.09.116
      [18]
      S.T. He, W.D. Zeng, J.W. Xu, and W. Chen, The effects of microstructure evolution on the fracture toughness of BT-25 titanium alloy during isothermal forging and subsequent heat treatment, Mater. Sci. Eng. A, 745(2019), p. 203. doi: 10.1016/j.msea.2018.12.062
      [19]
      J.R. Wood, P.A. Russo, M.F. Welter, and E.M. Crist, Thermomechanical processing and heat treatment of Ti–6Al–2Sn–2Zr–2Cr–2Mo–Si for structural applications, Mater. Sci. Eng. A, 243(1998), No. 1-2, p. 109. doi: 10.1016/S0921-5093(97)00787-9
      [20]
      J.X. Li, L.Q. Wang, J.N. Qin, Y.F. Chen, W.J. Lu, and D. Zhang, Effect of TRIPLEX heat treatment on tensile properties of in situ synthesized (TiB + La2O3)/Ti composite, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5811. doi: 10.1016/j.msea.2010.05.065
      [21]
      S.M.C. van Bohemen, A. Kamp, R.H. Petrov, L.A.I. Kestens, and J. Sietsma, Nucleation and variant selection of secondary α plates in a β Ti alloy, Acta Mater., 56(2008), No. 20, p. 5907. doi: 10.1016/j.actamat.2008.08.016
      [22]
      S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, and S.L. Semiatin, Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure, Acta Mater., 57(2009), No. 8, p. 2470. doi: 10.1016/j.actamat.2009.02.016
      [23]
      J.X. Li, L.Q. Wang, J.N. Qin, Y.F. Chen, W.J. Lu, and D. Zhang, The effect of heat treatment on thermal stability of Ti matrix composite, J. Alloys Compd., 509(2011), No. 1, p. 52. doi: 10.1016/j.jallcom.2010.09.005
      [24]
      A.K. Singh, C. Ramachandra, and V. Singh, Orientation relationship between matrix phases and silicide S2 in alloy Ti–6Al–1.6Zr–3.3Mo–0.3Si, J. Mater. Sci. Lett., 11(1992), No. 4, p. 218. doi: 10.1007/BF00741426
      [25]
      W.J. Jia, W.D. Zeng, and H.Q. Yu, Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy, Mater. Des., 58(2014), p. 108. doi: 10.1016/j.matdes.2014.01.063
      [26]
      C.J. Zhang, X. Li, S.Z. Zhang, L.H. Chai, Z.Y. Chen, F.T. Kong, and Y.Y. Chen, Effects of direct rolling deformation on the microstructure and tensile properties of the 2.5 vol% (TiBw+TiCp)/Ti composites, Mater. Sci. Eng. A, 684(2017), p. 645. doi: 10.1016/j.msea.2016.12.113

    Catalog


    • /

      返回文章
      返回