留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 10
Oct.  2021

图(6)

数据统计

分享

计量
  • 文章访问数:  1052
  • HTML全文浏览量:  395
  • PDF下载量:  67
  • 被引次数: 0
Qi Wang, Yue-yong Du, Yan-qing Lai, Fang-yang Liu, Liang-xing Jiang, and Ming Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1629-1635. https://doi.org/10.1007/s12613-021-2249-7
Cite this article as:
Qi Wang, Yue-yong Du, Yan-qing Lai, Fang-yang Liu, Liang-xing Jiang, and Ming Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1629-1635. https://doi.org/10.1007/s12613-021-2249-7
引用本文 PDF XML SpringerLink
研究论文

碳纳米管界面层修饰的锂离子电池三维硫化锑负极

  • Research Article

    Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries

    + Author Affiliations
    • Antimony sulfide (Sb2S3) is a promising anode for lithium-ion batteries due to its high capacity and vast reserves. However, the low electronic conductivity and severe volume change during cycling hinder its commercialization. Herein our work, a three-dimensional (3D) Sb2S3 thin film anode was fabricated via a simple vapor transport deposition system by using natural stibnite as raw material and stainless steel fiber-foil (SSF) as 3D current collector, and a carbon nanotube interphase was introduced onto the film surface by a simple dropping-heating process to promote the electrochemical performances. This 3D structure can greatly improve the initial coulombic efficiency to a record of 86.6% and high reversible rate capacity of 760.8 mAh·g−1 at 10 C. With carbon nanotubes interphase modified, the Sb2S3 anode cycled extremely stable with high capacity retention of 94.7% after 160 cycles. This work sheds light on the economical preparation and performance optimization of Sb2S3-based anodes.

    • loading
    • [1]
      M.L. Hao, J. Li, S. Park, S. Moura, and C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy, Nat. Energy, 3(2018), No. 10, p. 899. doi: 10.1038/s41560-018-0243-8
      [2]
      Z.D. Lei, Q.S. Yang, Y. Xu, S.Y. Guo, W.W. Sun, H. Liu, L.P. Lv, Y. Zhang, and Y. Wang, Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry, Nat. Commun., 9(2018), art. No. 576. doi: 10.1038/s41467-018-02889-7
      [3]
      M. Ko, S. Chae, J. Ma, N. Kim, H.W. Lee, Y. Cui, and J. Cho, Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries, Nat. Energy, 1(2016), art. No. 16113. doi: 10.1038/nenergy.2016.113
      [4]
      H.S. Hou, M.J. Jing, Z.D. Huang, Y.C. Yang, Y. Zhang, J. Chen, Z.B. Wu, and X.B. Ji, One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 34, p. 19362. doi: 10.1021/acsami.5b05509
      [5]
      S.H. Dong, C.X. Li, X.L. Ge, Z.Q. Li, X.G. Miao, and L.W. Yin, ZnS–Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries, ACS Nano, 11(2017), No. 6, p. 6474. doi: 10.1021/acsnano.7b03321
      [6]
      S.S. Yao, J. Cui, J.Q. Huang, Z.H. Lu, Y. Deng, W.G. Chong, J.X. Wu, M. Ihsan Ul Haq, F. Ciucci, and J.K. Kim, Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance, Adv. Energy Mater., 8(2018), No. 24, art. No. 1800710. doi: 10.1002/aenm.201800710
      [7]
      W. Luo, X. Ao, Z.S. Li, L. Lv, J.G. Li, G. Hong, Q.H. Wu, and C.D. Wang, Imbedding ultrafine Sb2S3 nanoparticles in mesoporous carbon sphere for high-performance lithium-ion battery, Electrochim. Acta, 290(2018), p. 185. doi: 10.1016/j.electacta.2018.09.070
      [8]
      S.S. Yao, J. Cui, Y. Deng, W.G. Chong, J.X. Wu, M. Ihsan-Ul-haq, Y.W. Mai, and J.K. Kim, Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage, Energy Storage Mater., 20(2019), p. 36. doi: 10.1016/j.ensm.2018.11.005
      [9]
      P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, and D.Y.W. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@Graphene for a superior lithium battery anode, Chem. Mater., 24(2012), No. 24, p. 4750. doi: 10.1021/cm3031818
      [10]
      X.Z. Zhou, L.H. Bai, J. Yan, S.H. He, and Z.Q. Lei, Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance, Electrochim. Acta, 108(2013), p. 17. doi: 10.1016/j.electacta.2013.06.049
      [11]
      D.Y.W. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, and O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nat. Commun., 4(2013), art. No. 2922. doi: 10.1038/ncomms3922
      [12]
      A.W. Nemaga, J. Mallet, J. Michel, C. Guery, M. Molinari, and M. Morcrette, All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries, J. Power Sources, 393(2018), p. 43. doi: 10.1016/j.jpowsour.2018.04.093
      [13]
      J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, and J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation, Adv. Mater., 30(2018), No. 6, art. No. 1704337. doi: 10.1002/adma.201704337
      [14]
      R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949. doi: 10.1038/ncomms13949
      [15]
      H. Park, J.H. Um, H. Choi, W.S. Yoon, Y.E. Sung, and H. Choe, Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries, Appl. Surf. Sci., 399(2017), p. 132. doi: 10.1016/j.apsusc.2016.12.043
      [16]
      R.J. Zou, Z.Y. Zhang, M.F. Yuen, M.L. Sun, J.Q. Hu, C.S. Lee, and W.J. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries, NPG Asia Mater., 7(2015), No. 6, art. No. e195. doi: 10.1038/am.2015.63
      [17]
      W. Yuan, B.Y. Wang, H. Wu, M.W. Xiang, Q. Wang, H. Liu, Y. Zhang, H.K. Liu, and S.X. Dou, A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries, J. Power Sources, 379(2018), p. 10. doi: 10.1016/j.jpowsour.2018.01.023
      [18]
      E. Peled, F. Patolsky, D. Golodnitsky, K. Freedman, G. Davidi, and D. Schneier, Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries, Nano Lett., 15(2015), No. 6, p. 3907. doi: 10.1021/acs.nanolett.5b00744
      [19]
      H.C. Tao, S.C. Zhu, L.Y. Xiong, X.L. Yang, and L.L. Zhang, Three-dimensional carbon-coated SnO2/reduced graphene oxide foam as a binder-free anode for high-performance lithium-ion batteries, ChemElectroChem, 3(2016), No. 7, p. 1063. doi: 10.1002/celc.201600128
      [20]
      Y. Yang, X.J. Fan, G. Casillas, Z.W. Peng, G.D. Ruan, G. Wang, M.J. Yacaman, and J.M. Tour, Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries, ACS Nano, 8(2014), No. 4, p. 3939. doi: 10.1021/nn500865d
      [21]
      S. Moitzheim, J.E. Balder, R. Ritasalo, S. Ek, P. Poodt, S. Unnikrishnan, S. De Gendt, and P.M. Vereecken, Toward 3D thin-film batteries: Optimal current-collector design and scalable fabrication of TiO2 thin-film electrodes, ACS Appl. Energy Mater., 2(2019), No. 3, p. 1774. doi: 10.1021/acsaem.8b01905
      [22]
      Q. Wang, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Amorphous Sb2S3 anodes by reactive radio frequency magnetron sputtering for high-performance lithium-ion half/full cells, Energy Technol., 7(2019), No. 11, art. No. 1900928. doi: 10.1002/ente.201900928
      [23]
      A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4(2005), No. 5, p. 366. doi: 10.1038/nmat1368
      [24]
      P. Makreski, G. Petruševski, S. Ugarković, and G. Jovanovski, Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts, Vib. Spectrosc., 68(2013), p. 177. doi: 10.1016/j.vibspec.2013.07.007
      [25]
      P. Makreski, G. Jovanovski, B. Minceva-Sukarova, B. Soptrajanov, A. Green, B. Engelen, and I. Grzetic, Vibrational spectra of M3IMIIIS3 type synthetic minerals (MI = Tl or Ag and MIII = As or Sb), Vib. Spectrosc., 35(2004), No. 1-2, p. 59. doi: 10.1016/j.vibspec.2003.11.007
      [26]
      S. Kharbish, E. Libowitzky, and A. Beran, Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite, Eur. J. Mineral., 21(2009), No. 2, p. 325. doi: 10.1127/0935-1221/2009/0021-1914
      [27]
      H. Li, K. Qian, X.Y. Qin, D.Q. Liu, R.Y. Shi, A.H. Ran, C.P. Han, Y.B. He, F.Y. Kang, and B.H. Li, The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene, J. Power Sources, 385(2018), p. 114. doi: 10.1016/j.jpowsour.2018.03.031
      [28]
      R. Parize, T. Cossuet, O. Chaix-Pluchery, H. Roussel, E. Appert, and V. Consonni, In situ analysis of the crystallization process of Sb2S3 thin films by Raman scattering and X-ray diffraction, Mater. Des., 121(2017), p. 1. doi: 10.1016/j.matdes.2017.02.034
      [29]
      Q.H. Nguyen, J.S. Choi, Y.C. Lee, I.T. Kim, and J. Hur, 3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage, J. Ind. Eng. Chem., 69(2019), p. 116. doi: 10.1016/j.jiec.2018.09.015
      [30]
      Q. Li, G.Z. Zhu, Y.H. Zhao, K. Pei, and R.C. Che, NixMnyCozO nanowire/CNT composite microspheres with 3D interconnected conductive network structure via spray-drying method: A high-capacity and long-cycle-life anode material for lithium-ion batteries, Small, 15(2019), No. 15, art. No. 1900069. doi: 10.1002/smll.201900069
      [31]
      H.L. Zhang, C.G. Hu, Y. Ding, and Y. Lin, Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO, J. Alloys Compd., 625(2015), p. 90. doi: 10.1016/j.jallcom.2014.11.052
      [32]
      S.J. Wang, S.S. Liu, X.M. Li, C. Li, R. Zang, Z.M. Man, Y.H. Wu, P.X. Li, and G.X. Wang, SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries, Chem. Eur. J., 24(2018), No. 15, p. 3873. doi: 10.1002/chem.201705855
      [33]
      D.Y.W. Yu, H.E. Hoster, and S.K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries, Sci. Rep., 4(2015), No. 1, art. No. 4562. doi: 10.1038/srep04562
      [34]
      J.J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, and X.Y. Wang, Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries, Nano-Micro Lett., 10(2018), No. 1, art. No. 12. doi: 10.1007/s40820-017-0165-1
      [35]
      Y.C. Dong, S.L. Yang, Z.Y. Zhang, J.M. Lee, and J.A. Zapien, Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials, Nanoscale, 10(2018), No. 7, p. 3159. doi: 10.1039/C7NR09441H
      [36]
      J. Ren, R.P. Ren, and Y.K. Lv, A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery, Chem. Eng. J., 353(2018), p. 419. doi: 10.1016/j.cej.2018.07.139
      [37]
      Y.R. Dong, H. Jiang, Z.N. Deng, Y.J. Hu, and C.Z. Li, Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage, Chem. Eng. J., 350(2018), p. 1066. doi: 10.1016/j.cej.2018.06.044
      [38]
      C.R. Zhu, X.H. Xia, J.L. Liu, Z.X. Fan, D.L. Chao, H. Zhang, and H.J. Fan, TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode, Nano Energy, 4(2014), p. 105. doi: 10.1016/j.nanoen.2013.12.018
      [39]
      W.J. Tang, X.L. Wang, D. Xie, X.H. Xia, C.D. Gu, and J.P. Tu, Hollow metallic 1T MoS2 arrays grown on carbon cloth: A freestanding electrode for sodium ion batteries, J. Mater. Chem. A, 6(2018), No. 37, p. 18318. doi: 10.1039/C8TA06905K

    Catalog


    • /

      返回文章
      返回