留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1506
  • HTML全文浏览量:  432
  • PDF下载量:  58
  • 被引次数: 0
Yahya Jafari Tarzanagh, Davod Seifzadeh, and Roghaye Samadianfard, Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol–gel coating for active corrosion protection of the magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 536-546. https://doi.org/10.1007/s12613-021-2251-0
Cite this article as:
Yahya Jafari Tarzanagh, Davod Seifzadeh, and Roghaye Samadianfard, Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol–gel coating for active corrosion protection of the magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 536-546. https://doi.org/10.1007/s12613-021-2251-0
引用本文 PDF XML SpringerLink
研究论文

8-羟基喹啉插层双氢氧化膜与溶胶–凝胶涂层对镁合金的腐蚀防护性能研究

  • 通讯作者:

    Davod Seifzadeh    E-mail: seifzadeh@uma.ac.ir

  • 采用8-羟基喹啉(8-HQ)插层双氢氧化物(LDH)膜为底层和溶胶–凝胶层相结合的方法,对AM60B镁合金进行了腐蚀防护性能的研究。采用扫描电子显微镜(SEM)、场发射扫描电子显微镜(FESEM)、能量色散X射线能谱(EDS)、X射线衍射(XRD)、原子力显微镜(AFM)和电化学阻抗谱(EIS)等方法对LDH、LDH/溶胶–凝胶和LDH@HQ/溶胶–凝胶涂层进行分析。SEM图像显示,垂直生长的纳米片组成的LDH膜完全覆盖在表面。LDH/溶胶–凝胶和LDH@HQ/溶胶–凝胶涂层的形貌相同。此外,除了LDH@HQ/溶胶–凝胶涂层具有相对较高的表面粗糙度外,两种复合涂层的形貌几乎相同。虽然在3.5wt% NaCl溶液中,LDH膜具有与合金样品相同的阻抗行为,但其耐蚀性要高得多,这可能是由于其阻隔性以及对氯离子的捕获。与LDH薄膜相似,随着暴露时间的延长,LDH/溶胶–凝胶复合材料的耐蚀性降低。但其值远高于LDH膜,这主要与溶液路径的封闭有关。LDH@HQ/溶胶–凝胶复合材料的抗腐蚀性能优于LDH/溶胶–凝胶涂层,原因是8-HQ通过络合作用吸附在损伤部位。

  • Research Article

    Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol–gel coating for active corrosion protection of the magnesium alloy

    + Author Affiliations
    • 8-hydroxyquinoline (8-HQ) intercalated layered double hydroxides (LDH) film as underlayer and sol–gel layer was combined for active corrosion protection of the AM60B magnesium alloy. The LDH, LDH/sol–gel, and LDH@HQ/sol–gel coatings were analyzed using the scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) methods. The SEM images showed that the surface was entirely coated by the LDH film composed of vertically-grown nanosheets. The same morphology was observed for the LDH/sol–gel and LDH@HQ/sol–gel coatings. Also, almost the same topography was observed for both composite coatings except that the LDH@HQ/sol–gel coating had relatively higher surface roughness. Although the LDH film had the same impedance behavior as the alloy sample in 3.5wt% NaCl solution, its corrosion resistance was much higher, which could be due to its barrier properties as well as to the trapping of the chloride ions. Similar to the LDH film, the corrosion resistance of the LDH/sol–gel composite diminished with increasing the exposure time. However, its values were much higher than that of the LDH film, which was mainly related to the sealing of the solution pathways. The LDH@HQ/sol–gel composite showed much better anti-corrosion properties than the LDH/sol–gel coating due to the adsorption of the 8-HQ on the damaged areas through the complexation.

    • loading
    • [1]
      A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
      [2]
      S. Manivannan, P. Dinesh, R. Mahemaa, N. MariyaPillai, S.P.K. Babu, and S. Sundarrajan, Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1196. doi: 10.1007/s12613-016-1339-4
      [3]
      S. Nezamdoust, D. Seifzadeh, and A. Habibi-Yangjeh, Nanodiamond incorporated sol−gel coating for corrosion protection of magnesium alloy, Trans. Nonferrous Met. Soc. China, 30(2020), No. 6, p. 1535. doi: 10.1016/S1003-6326(20)65317-1
      [4]
      J.J. Yang, C. Blawert, S.V. Lamaka, K.A. Yasakau, L. Wang, D. Laipple, M. Schieda, S.C. Di, and M.L. Zheludkevich, Corrosion inhibition of pure Mg containing a high level of iron impurity in pH neutral NaCl solution, Corros. Sci., 142(2018), p. 222. doi: 10.1016/j.corsci.2018.07.027
      [5]
      S. Pommiers-Belin, J. Frayret, A. Uhart, J.B. Ledeuil, J.C. Dupin, A. Castetbon, and M. Potin-Gautier, Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A, Appl. Surf. Sci., 298(2014), p. 199. doi: 10.1016/j.apsusc.2014.01.162
      [6]
      N.V. Phuong, M. Gupta, and S. Moon, Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China, 27(2017), No. 5, p. 1087. doi: 10.1016/S1003-6326(17)60127-4
      [7]
      Y.C. Su, C.J. Lu, X.L. Hu, Y.T. Guo, X.C. Xun, Z.H. Zhang, G.Y. Li, J.S. Lian, and L.Q. Ren, Improving the degradation resistance and surface biomineralization ability of calcium phosphate coatings on a biodegradable magnesium alloy via a sol–gel spin coating method, J. Electrochem. Soc., 165(2018), No. 3, p. C155. doi: 10.1149/2.0901803jes
      [8]
      V. Shkirskiy, P. Keil, H. Hintze-Bruening, F. Leroux, P. Vialat, G. Lefèvre, K. Ogle, and P. Volovitch, Factors affecting $ {\rm{MoO}}_4^{2-} $ inhibitor release from Zn2Al based layered double hydroxide and their implication in protecting hot dip galvanized steel by means of organic coatings, ACS Appl. Mater. Interfaces, 7(2015), No. 45, p. 25180. doi: 10.1021/acsami.5b06702
      [9]
      Z. Rajabalizadeh, D. Seifzadeh, and A. Habibi-Yangjeh, Online evaluation of electroless deposition rate by electrochemical noise method, Trans. Nonferrous Met. Soc. China, 29(2019), No. 8, p. 1753. doi: 10.1016/S1003-6326(19)65083-1
      [10]
      D.B. Prabhu, P. Gopalakrishnan, and K.R. Ravi, Morphological studies on the development of chemical conversion coating on surface of Mg–4Zn alloy and its corrosion and bio mineralisation behaviour in simulated body fluid, J. Alloys Compd., 812(2020), art. No. 152146. doi: 10.1016/j.jallcom.2019.152146
      [11]
      C. Blawert, W. Dietzel, E. Ghali, and G. Song, Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Adv. Eng. Mater., 8(2006), No. 6, p. 511. doi: 10.1002/adem.200500257
      [12]
      C.L. Zhang, F. Zhang, L. Song, R.C. Zeng, S.Q. Li, and E.H. Han, Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg–Li–Ca alloy, J. Alloys Compd., 728(2017), p. 815. doi: 10.1016/j.jallcom.2017.08.159
      [13]
      R.C. Zeng, L.Y. Cui, K. Jiang, R. Liu, B.D. Zhao, and Y.F. Zheng, In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants, ACS Appl. Mater. Interfaces, 8(2016), No. 15, p. 10014. doi: 10.1021/acsami.6b00527
      [14]
      H. Tang and Y. Gao, Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation, J. Alloys Compd., 688(2016), p. 699. doi: 10.1016/j.jallcom.2016.07.079
      [15]
      L. Liu, Q.Y. Yang, L. Huang, X.M. Liu, Y.Q. Liang, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, Y.F. Zheng, K.W.K. Yeung, and S.L. Wu, The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium–strontium alloy, Appl. Surf. Sci., 484(2019), p. 511. doi: 10.1016/j.apsusc.2019.04.107
      [16]
      L.J. Zhang, E.A.A. Mohammed, and A. Adriaens, Synthesis and electrochemical behavior of a magnesium fluoride-polydopamine-stearic acid composite coating on AZ31 magnesium alloy, Surf. Coat. Technol., 307(2016), p. 56. doi: 10.1016/j.surfcoat.2016.08.021
      [17]
      N. Iqbal, S. Iqbal, T. Iqbal, H.R. Bakhsheshi-Rad, A. Alsakkaf, A. Kamil, M.R.A. Kadir, M.H. Idris, and H.B. Raghav, Zinc-doped hydroxyapatite–zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance, Trans. Nonferrous Met. Soc. China, 30(2020), No. 1, p. 123. doi: 10.1016/S1003-6326(19)65185-X
      [18]
      I.L. Lehr and S.B. Saidman, Corrosion protection of AZ91D magnesium alloy by a cerium–molybdenum coating—The effect of citric acid as an additive, J. Magnesium Alloys, 6(2018), No. 4, p. 356. doi: 10.1016/j.jma.2018.10.002
      [19]
      J. Jayaraj, K.R. Rajesh, S.A. Raj, A. Srinivasan, S. Ananthakumar, N.G.K. Dhaipule, S.K. Kalpathy, U.T.S. Pillai, and U.K. Mudali, Investigation on the corrosion behavior of lanthanum phosphate coatings on AZ31 Mg alloy obtained through chemical conversion technique, J. Alloys Compd., 784(2019), p. 1162. doi: 10.1016/j.jallcom.2019.01.121
      [20]
      L.L. Zhou, H. Friis, M. Roefzaad, K.B. Hansen, S. Eisenhardt, A.G. de Andersen, N. Tabrizian, and N. Zangenberg, Steam initiated hydrotalcite conversion coatings: Application to environmental Al alloy surface treatment, Surf. Coat. Technol., 340(2018), p. 45. doi: 10.1016/j.surfcoat.2018.02.037
      [21]
      X.D. Yan, M.C. Zhao, Y. Yang, L.L. Tan, Y.C. Zhao, D.F. Yin, K. Yang, and A. Atrens, Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper, Corros. Sci., 156(2019), p. 125. doi: 10.1016/j.corsci.2019.05.015
      [22]
      A. Yabuki, T. Shiraiwa, and I.W. Fathona, pH-controlled self-healing polymer coatings with cellulose nanofibers providing an effective release of corrosion inhibitor, Corros. Sci., 103(2016), p. 117. doi: 10.1016/j.corsci.2015.11.015
      [23]
      Y.T. Guo, Y.C. Su, S.Q. Jia, G.X. Sun, R. Gu, D.H. Zhu, G.Y. Li, and J.S. Lian, Hydroxyapatite/titania composite coatings on biodegradable magnesium alloy for enhanced corrosion resistance, cytocompatibility and antibacterial properties, J. Electrochem. Soc., 165(2018), No. 14, p. C962. doi: 10.1149/2.1171814jes
      [24]
      Y.T. Guo, S.Q. Jia, L. Qiao, Y.C. Su, R. Gu, G.Y. Li, and J.S. Lian, Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications, J. Alloys Compd., 817(2020), art. No. 152782. doi: 10.1016/j.jallcom.2019.152782
      [25]
      A.F. Galio, S.V. Lamaka, M.L. Zheludkevich, L.F.P. Dick, I.L. Müller, and M.G.S. Ferreira, Inhibitor-doped sol–gel coatings for corrosion protection of magnesium alloy AZ31, Surf. Coat. Technol., 204(2010), No. 9-10, p. 1479. doi: 10.1016/j.surfcoat.2009.09.067
      [26]
      D.H. Wang and G.P. Bierwagen, Sol–gel coatings on metals for corrosion protection, Prog. Org. Coat., 64(2009), No. 4, p. 327. doi: 10.1016/j.porgcoat.2008.08.010
      [27]
      Z.T. Khodair, A.A. Khadom, and H.A. Jasim, Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: Preparation, characterization and mathematical views, J. Mater. Res. Technol., 8(2019), No. 1, p. 424. doi: 10.1016/j.jmrt.2018.03.003
      [28]
      Y.J. Tarzanagh, D. Seifzadeh, Z. Rajabalizadeh, A. Habibi-Yangjeh, A. Khodayari, and S. Sohrabnezhad, Sol–gel/MOF nanocomposite for effective protection of 2024 aluminum alloy against corrosion, Surf. Coat. Technol., 380(2019), art. No. 125038. doi: 10.1016/j.surfcoat.2019.125038
      [29]
      H. Ashassi-Sorkhabi, S. Moradi-Alavian, and A. Kazempour, Salt-nanoparticle systems incorporated into sol–gel coatings for corrosion protection of AZ91 magnesium alloy, Prog. Org. Coat., 135(2019), p. 475. doi: 10.1016/j.porgcoat.2019.06.043
      [30]
      M.A. Ashraf, Z.L. Liu, W.X. Peng, and N. Yoysefi, Amino acid and TiO2 nanoparticles mixture inserted into sol–gel coatings: An efficient corrosion protection system for AZ91 magnesium alloy, Prog. Org. Coat., 136(2019), art. No. 105296. doi: 10.1016/j.porgcoat.2019.105296
      [31]
      H. Ashassi-Sorkhabi, S. Moradi-Alavian, R. Jafari, A. Kazempour, and E. Asghari, Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol–gel coating applied on AZ91 Mg alloy, Mater. Chem. Phys., 225(2019), p. 298. doi: 10.1016/j.matchemphys.2018.12.059
      [32]
      S. Nezamdoust, D. Seifzadeh, and Z. Rajabalizadeh, PTMS/OH-MWCNT sol–gel nanocomposite for corrosion protection of magnesium alloy, Surf. Coat. Technol., 335(2018), p. 228. doi: 10.1016/j.surfcoat.2017.12.044
      [33]
      C. Singh, S.K. Tiwari, and R. Singh, Effect of carbonate and phosphate conversion pretreatments and optimization on corrosion behaviour of subsequent electroless nickel coating on AZ91 alloy, Appl. Surf. Sci., 483(2019), p. 334. doi: 10.1016/j.apsusc.2019.03.230
      [34]
      S. Nezamdoust and D. Seifzadeh, Application of CeH–V/sol–gel composite coating for corrosion protection of AM60B magnesium alloy, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 352. doi: 10.1016/S1003-6326(17)60039-6
      [35]
      K.A. Yasakau, A. Kuznetsova, S. Kallip, M. Starykevich, J. Tedim, M.G.S. Ferreira, and M.L. Zheludkevich, A novel bilayer system comprising LDH conversion layer and sol–gel coating for active corrosion protection of AA2024, Corros. Sci., 143(2018), p. 299. doi: 10.1016/j.corsci.2018.08.039
      [36]
      L. Pezzato, M. Rigon, A. Martucci, K. Brunelli, and M. Dabalà, Plasma Electrolytic Oxidation (PEO) as pre-treatment for sol–gel coating on aluminum and magnesium alloys, Surf. Coat. Technol., 366(2019), p. 114. doi: 10.1016/j.surfcoat.2019.03.023
      [37]
      F.L. Theiss, G.A. Ayoko, and R.L. Frost, Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review, Appl. Surf. Sci., 383(2016), p. 200. doi: 10.1016/j.apsusc.2016.04.150
      [38]
      A. Ghazizadeh, S.A. Haddadi, and M. Mahdavian, The effect of sol–gel surface modified silver nanoparticles on the protective properties of the epoxy coating, RSC Adv., 6(2016), No. 23, p. 18996. doi: 10.1039/C5RA27729A
      [39]
      A.P. Loperena, I.L. Lehr, and S.B. Saidman, Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films, J. Magnesium Alloys, 4(2016), No. 4, p. 278. doi: 10.1016/j.jma.2016.10.002
      [40]
      H. Ashassi-Sorkhabi, S. Moradi-Alavian, M.D. Esrafili, and A. Kazempour, Hybrid sol–gel coatings based on silanes-amino acids for corrosion protection of AZ91 magnesium alloy: Electrochemical and DFT insights, Prog. Org. Coat., 131(2019), p. 191. doi: 10.1016/j.porgcoat.2019.01.052
      [41]
      A.L.K. Tan, A.M. Soutar, I.F. Annergren, and Y.N. Liu, Multilayer sol–gel coatings for corrosion protection of magnesium, Surf. Coat. Technol., 198(2005), No. 1-3, p. 478. doi: 10.1016/j.surfcoat.2004.10.066
      [42]
      N.V. Murillo-Gutiérrez, F. Ansart, J.P. Bonino, M.J. Menu, and M. Gressier, Protection against corrosion of magnesium alloys with both conversion layer and sol–gel coating, Surf. Coat. Technol., 232(2013), p. 606. doi: 10.1016/j.surfcoat.2013.06.036
      [43]
      J.Y. Hu, Q. Li, X.K. Zhong, L. Zhang, and B. Chen, Composite anticorrosion coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol–gel coatings, Prog. Org. Coat., 66(2009), No. 3, p. 199. doi: 10.1016/j.porgcoat.2009.07.003
      [44]
      S. Nezamdoust, D. Seifzadeh, and Z. Rajabalizadeh, Application of novel sol–gel composites on magnesium alloy, J. Magnesium Alloys, 7(2019), No. 3, p. 419. doi: 10.1016/j.jma.2019.03.004
      [45]
      J. Tedim, M.L. Zheludkevich, A.N. Salak, A. Lisenkov, and M.G.S. Ferreira, Nanostructured LDH-container layer with active protection functionality, J. Mater. Chem., 21(2011), No. 39, art. No. 15464. doi: 10.1039/c1jm12463c
      [46]
      N. Kamiyama, G. Panomsuwan, E. Yamamoto, T. Sudare, N. Saito, and T. Ishizaki, Effect of treatment time in the Mg(OH)2/Mg-Al LDH composite film formed on Mg alloy AZ31 by steam coating on the corrosion resistance, Surf. Coat. Technol., 286(2016), p. 172. doi: 10.1016/j.surfcoat.2015.11.051
      [47]
      Z.Z. Yang, J.J. Wei, G.M. Zeng, H.Q. Zhang, X.F. Tan, C. Ma, X.C. Li, Z.H. Li, and C. Zhang, A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2, Coord. Chem. Rev., 386(2019), p. 154. doi: 10.1016/j.ccr.2019.01.018
      [48]
      M.R. Othman, Z. Helwani, Martunus, and W.J.N. Fernando, Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review, Appl. Organomet. Chem., 23(2009), No. 9, p. 335. doi: 10.1002/aoc.1517
      [49]
      M. Yu, H.P. Li, N. Du, and W.G. Hou, Understanding Li-Al-CO3 layered double hydroxides. (I) Urea-supported hydrothermal synthesis, J. Colloid Interface Sci., 547(2019), p. 183. doi: 10.1016/j.jcis.2019.03.101
      [50]
      Y.P. Zhou, J. Li, Y. Yang, B. Luo, X. Zhang, E. Fong, W. Chu, and K.M. Huang, Unique 3D flower-on-sheet nanostructure of NiCo LDHs: Controllable microwave-assisted synthesis and its application for advanced supercapacitors, J. Alloys Compd., 788(2019), p. 1029. doi: 10.1016/j.jallcom.2019.02.328
      [51]
      M.L. Zheludkevich, J. Tedim, and M.G.S. Ferreira, “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers, Electrochim. Acta, 82(2012), p. 314. doi: 10.1016/j.electacta.2012.04.095
      [52]
      X. Wang, L.X. Li, Z.H. Xie, and G. Yu, Duplex coating combining layered double hydroxide and 8-quinolinol layers on Mg alloy for corrosion protection, Electrochim. Acta, 283(2018), p. 1845. doi: 10.1016/j.electacta.2018.07.113
      [53]
      M.J. Anjum, J.M. Zhao, V.Z. Asl, G. Yasin, W. Wang, S.X. Wei, Z.J. Zhao, and W.Q. Khan, In-situ intercalation of 8-hydroxyquinoline in Mg–Al LDH coating to improve the corrosion resistance of AZ31, Corros. Sci., 157(2019), p. 1. doi: 10.1016/j.corsci.2019.05.022
      [54]
      M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, and M.G.S. Ferreira, Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor, Corros. Sci., 52(2010), No. 2, p. 602. doi: 10.1016/j.corsci.2009.10.020
      [55]
      T. Ishizaki, S. Chiba, K. Watanabe, and H. Suzuki, Corrosion resistance of Mg–Al layered double hydroxide container-containing magnesium hydroxide films formed directly on magnesium alloy by chemical-free steam coating, J. Mater. Chem. A, 1(2013), No. 31, art. No. 8968. doi: 10.1039/c3ta11015j
      [56]
      L. Wu, X.X. Ding, Z.C. Zheng, Y.L. Ma, A. Atrens, X.B. Chen, Z.H. Xie, D. Sun, and F.S. Pan, Fabrication and characterization of an actively protective Mg–Al LDHs/Al2O3 composite coating on magnesium alloy AZ31, Appl. Surf. Sci., 487(2019), p. 558. doi: 10.1016/j.apsusc.2019.05.115
      [57]
      F. Zhang, Z.G. Liu, R.C. Zeng, S.Q. Li, H.Z. Cui, L. Song, and E.H. Han, Corrosion resistance of Mg–Al-LDH coating on magnesium alloy AZ31, Surf. Coat. Technol., 258(2014), p. 1152. doi: 10.1016/j.surfcoat.2014.07.017
      [58]
      L.X. Li, Z.H. Xie, C. Fernandez, L. Wu, D.J. Cheng, X.H. Jiang, and C.J. Zhong, Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection, Electrochim. Acta, 330(2020), art. No. 135186. doi: 10.1016/j.electacta.2019.135186
      [59]
      J. Chen, Y.W. Song, D.Y. Shan, and E.H. Han, Study of the in situ growth mechanism of Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy, Corros. Sci., 63(2012), p. 148. doi: 10.1016/j.corsci.2012.05.022
      [60]
      Z. Rajabalizadeh and D. Seifzadeh, Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment, Appl. Surf. Sci., 422(2017), p. 696. doi: 10.1016/j.apsusc.2017.06.100
      [61]
      L. Wu, D.N. Yang, G. Zhang, Z. Zhang, S. Zhang, A.T. Tang, and F.S. Pan, Fabrication and characterization of Mg–M layered double hydroxide films on anodized magnesium alloy AZ31, Appl. Surf. Sci., 431(2018), p. 177. doi: 10.1016/j.apsusc.2017.06.244
      [62]
      R. Samadianfard, D. Seifzadeh, A. Habibi-Yangjeh, and Y. Jafari-Tarzanagh, Oxidized fullerene/sol–gel nanocomposite for corrosion protection of AM60B magnesium alloy, Surf. Coat. Technol., 385(2020), art. No. 125400. doi: 10.1016/j.surfcoat.2020.125400
      [63]
      C.L. Alexander, B. Tribollet, and M.E. Orazem, Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. influence of roughness, Electrochim. Acta, 173(2015), p. 416. doi: 10.1016/j.electacta.2015.05.010
      [64]
      X. Ye, Z.M. Jiang, L.X. Li, and Z.H. Xie, In-situ growth of NiAl-layered double hydroxide on AZ31 Mg alloy towards enhanced corrosion protection, Nanomaterials, 8(2018), No. 6, art. No. 411. doi: 10.3390/nano8060411
      [65]
      K. Abdi-Alghanab, D. Seifzadeh, Z. Rajabalizadeh, and A. Habibi-Yangjeh, High corrosion protection performance of the LDH/Ni–P composite coating on AM60B magnesium alloy, Surf. Coat. Technol., 397(2020), art. No. 125979. doi: 10.1016/j.surfcoat.2020.125979
      [66]
      S. Nezamdoust and D. Seifzadeh, rGO@APTES/hybrid sol–gel nanocomposite for corrosion protection of 2024 aluminum alloy, Prog. Org. Coat., 109(2017), p. 97. doi: 10.1016/j.porgcoat.2017.04.022
      [67]
      D. Seifzadeh, V. Valizadeh-Pashabeigh, and A. Bezaatpour, 5-CM-salophen schiff Base as an effective inhibitor for corrosion of mild steel in 0.5M HCl, Chem. Eng. Commun., 203(2016), p. 1279. doi: 10.1080/00986445.2016.1188290
      [68]
      D. Seifzadeh, S. Hamzedoust-Hasankiadeh, and A.N. Shamkhali, Electrochemical and DFT studies of 8-hydroxyquinoline as corrosion inhibitor for AZ61 magnesium alloy in acidic media, Prot. Met. Phys. Chem. Surf., 49(2013), No. 2, p. 229. doi: 10.1134/S2070205113020123
      [69]
      Q.F. Zong, L.D. Wang, W. Sun, and G.C. Liu, Active deposition of bis (8-hydroxyquinoline) magnesium coating for enhanced corrosion resistance of AZ91D alloy, Corros. Sci., 89(2014), p. 127. doi: 10.1016/j.corsci.2014.08.024

    Catalog


    • /

      返回文章
      返回