留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(5)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1258
  • HTML全文浏览量:  262
  • PDF下载量:  26
  • 被引次数: 0
Dong Wu, Wenya Li, Qiang Chu, Yangfan Zou, Xichang Liu,  and Yanjun Gao, Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al–Mg, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1589-1595. https://doi.org/10.1007/s12613-021-2254-x
Cite this article as:
Dong Wu, Wenya Li, Qiang Chu, Yangfan Zou, Xichang Liu,  and Yanjun Gao, Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al–Mg, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1589-1595. https://doi.org/10.1007/s12613-021-2254-x
引用本文 PDF XML SpringerLink
研究论文

自适应双轴肩搅拌摩擦焊Al–Mg接头局部显微组织及强化机制分析

  • 通讯作者:

    李文亚    E-mail: liwy@nwpu.edu.cn

文章亮点

  • (1) 系统研究了双轴肩搅拌摩擦焊接接头内部局部微观组织。
  • (2) 提出了双轴肩搅拌摩擦焊接中带状流动模式所产生的界面对接头性能的负贡献。
  • (3) 计算得到了界面存在所造成力学性能负贡献的数值。
  • 自适应双轴肩搅拌摩擦焊接可用于连接封闭和弯曲结构,同时可解决常规搅拌焊根部未焊透的问题,并能减轻对垫板的依赖,具备良好的应用前景。双轴肩的引入,在解决上述问题的同时,也造成了复杂的材料流动,使得内部组织变得复杂,形成了双轴肩搅拌摩擦焊中特有的带状流动组织。这些带状组织内部存在许多界面,降低了接头性能,断裂及破坏常发生于带状流动组织处。有必要研究接头内部复杂的微观组织和界面存在对性能的影响。因此,本文采用双轴肩搅拌摩擦焊接,成功制备了6 mm厚的5A06的铝合金接头,并采用电子背散射衍射技术,研究了接头中非均匀的微观组织,并分析了局部微观组织对接头力学性能的影响。结果表明:搅拌区接近表层处的晶粒尺寸小于中心区域,接头中再结晶比例最低和局部取向差最小的位置是焊核中心靠近热力影响区处,具体值是22%和1.15 $\times \;{10}^{-13}{\mathrm{m}}^{-2}$。接头中织构强度最高的位置是热影响区,紧接着是焊核区,热力影响区是接头中织构强度最低的位置。带状流动区域的界面对接头整体强度存在负贡献,拉伸测试结果验证了界面存在弱化了接头性能,并计算得出负贡献的数值为93 MPa。
  • Research Article

    Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al–Mg

    + Author Affiliations
    • The bobbin tool friction stir welding process was used to join 6 mm thick 5A06 aluminum alloy plates. Optical microscope was used to characterize the microstructure. The electron backscatter diffraction (EBSD) identified the effect of non-homogeneous microstructure on the tensile properties. It was observed that the grain size in the top of the stir zone (SZ) is smaller than that in the centre region. The lowest ratio of recrystallization and density of the geometrically-necessary dislocations (GNDs) in the SZ was found in the middle near the thermo-mechanically affected zone (TMAZ) being 22% and 1.15 × 10−13 m−2, respectively. The texture strength of the heat-affected zone (HAZ) is the largest, followed by that in the SZ, with the lowest being in the TMAZ. There were additional interfaces developed which contributed to the strengthening mechanism, and their effect on tensile strength was analysed. The tensile tests identified the weakest part in the joint at the interfaces, and the specific reduction value is about 93 MPa.
    • loading
    • [1]
      X.X. Zhang, D.R. Ni, B.L. Xiao, H. Andrä, W.M. Gan, M. Hofmann, and Z.Y. Ma, Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction, Acta Mater., 87(2015), p. 161. doi: 10.1016/j.actamat.2015.01.006
      [2]
      B. Bagheri, M. Abbasi, and A. Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 450. doi: 10.1007/s12613-020-2085-1
      [3]
      M. Hajizadeh, S. Emami and T. Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. P1517. doi: 10.1007/s12613-020-2001-8
      [4]
      K. Fuse and V. Badheka, Bobbin tool friction stir welding: A review, Sci. Technol. Weld. Joining, 24(2019), No. 4, p. 277. doi: 10.1080/13621718.2018.1553655
      [5]
      T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, and G. Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1457. doi: 10.1007/s12613-018-1700-x
      [6]
      L. Zhou, G.H. Li, G.D. Zha, F.Y. Shu, H.J. Liu, and J.C. Feng, Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy, Sci. Technol. Weld. Joining, 23(2018), No. 7, p. 596. doi: 10.1080/13621718.2018.1432098
      [7]
      J. Chen, H. Fujii, Y.F. Sun, Y. Morisada, and R. Ueji, Fine grained Mg–3Al–1Zn alloy with randomized texture in the double-sided friction stir welded joints, Mater. Sci. Eng. A, 580(2013), p. 83. doi: 10.1016/j.msea.2013.05.044
      [8]
      B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, and A.M. Strauss, Friction stir welding: Process, automation, and control, J. Manuf. Process., 16(2014), No. 1, p. 56. doi: 10.1016/j.jmapro.2013.04.002
      [9]
      J.H. Dong, C. Gao, Y. Lu, J. Han, X.D. Jiao, and Z.X. Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024–T3 aluminum alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 171. doi: 10.1007/s12613-017-1392-7
      [10]
      W.M. Thomas, C.S. Wiesner, D.J. Marks, and D.G. Staines, Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials, Sci. Technol. Weld. Joining, 14(2009), No. 3, p. 247. doi: 10.1179/136217109X415893
      [11]
      F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, and J.F. dos Santos, Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy, Mater. Des., 86(2015), p. 933. doi: 10.1016/j.matdes.2015.07.096
      [12]
      G.R. Cui, Z.Y. Ma, and S.X. Li, The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al–Mg alloy, Acta Mater., 57(2009), No. 19, p. 5718. doi: 10.1016/j.actamat.2009.07.065
      [13]
      W.F. Xu, Y.X. Luo, and M.W. Fu, Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy, Mater. Charact., 138(2018), p. 48. doi: 10.1016/j.matchar.2018.01.051
      [14]
      A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, and M.Z. Omar, Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061, Mater. Sci. Eng. A, 754(2019), p. 728. doi: 10.1016/j.msea.2019.03.017
      [15]
      G.Q. Wang, Y.H. Zhao, and Y.Y. Tang, Research progress of bobbin tool friction stir welding of aluminum alloys: A review, Acta Metall. Sinica Engl. Lett., 33(2020), No. 1, p. 13. doi: 10.1007/s40195-019-00946-8
      [16]
      A.L. Lafly, D. Alléhaux, F. Marie, C. Dalle Donne, and G. Biallas, Microstructure and mechanical properties of the aluminium alloy 6056 welded by friction stir welding techniques, Weld. World, 50(2006), No. 11-12, p. 98. doi: 10.1007/BF03263466
      [17]
      C. Yang, D.R. Ni, P. Xue, B.L. Xiao, W. Wang, K.S. Wang, and Z.Y. Ma, A comparative research on bobbin tool and conventional friction stir welding of Al–Mg–Si alloy plates, Mater. Charact., 145(2018), p. 20. doi: 10.1016/j.matchar.2018.08.027
      [18]
      W.F. Xu, Y.X. Luo, W. Zhang, and M.W. Fu, Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate, J. Mater. Sci. Technol., 34(2018), No. 1, p. 173. doi: 10.1016/j.jmst.2017.05.015
      [19]
      M. Esmaily, N. Mortazavi, W. Osikowicz, H. Hindsefelt, J.E. Svensson, M. Halvarsson, J. Martin, and L.G. Johansson, Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles, Mater. Des., 108(2016), p. 114. doi: 10.1016/j.matdes.2016.06.089
      [20]
      D. Wu, W.Y. Li, Y.J. Gao, J. Yang, Q. Wen, N. Vidakis, and A. Vairis, Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al–Mg joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 710. doi: 10.1007/s12613-020-2134-9
      [21]
      F.F. Wang, W.Y. Li, J. Shen, Z.H. Zhang, J.L. Li, and J.F. dos Santos, Global and local mechanical properties and microstructure of Bobbin tool friction-stir-welded Al–Li alloy, Sci. Technol. Weld. Joining, 21(2016), No. 6, p. 479. doi: 10.1080/13621718.2015.1132128
      [22]
      S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure, Low-temperature friction-stir welding of 2024 aluminum, Scr. Mater., 41(1999), No. 8, p. 809. doi: 10.1016/S1359-6462(99)00226-2
      [23]
      T. Azimzadegan and S. Serajzadeh, An investigation into microstructures and mechanical properties of AA7075-T6 during friction stir welding at relatively high rotational speeds, J. Mater. Eng. Perform., 19(2010), No. 9, p. 1256. doi: 10.1007/s11665-010-9625-1
      [24]
      V.K. Patel, S.D. Bhole, and D.L. Chen, Influence of ultrasonic spot welding on microstructure in a magnesium alloy, Scr. Mater., 65(2011), No. 10, p. 911. doi: 10.1016/j.scriptamat.2011.08.009
      [25]
      R. Badji, T. Chauveau, and B. Bacroix, Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint, Mater. Sci. Eng. A, 575(2013), p. 94. doi: 10.1016/j.msea.2013.03.018
      [26]
      C. Herrera, D. Ponge, and D. Raabe, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater., 59(2011), No. 11, p. 4653. doi: 10.1016/j.actamat.2011.04.011
      [27]
      R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp and K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 20, pp. P5246-5254. doi: 10.1016/j.msea.2010.04.086
      [28]
      J.J. Sidor, R.H. Petrov, and L.A.I. Kestens, Microstructural and texture changes in severely deformed aluminum alloys, Mater. Charact., 62(2011), No. 2, p. 228. doi: 10.1016/j.matchar.2010.12.004
      [29]
      M.M. Moradi, H.J. Aval, R. Jamaati, S. Amirkhanlou, and S.X. Ji, Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061, J. Manuf. Process., 32(2018), p. 1. doi: 10.1016/j.jmapro.2018.01.016
      [30]
      J.J. Shen, F.F. Wang, U.F.H. Suhuddin, S.Y. Hu, W.Y. Li, and J.F.d. Santos, Crystallographic texture in bobbin tool friction-stir-welded aluminum, Metall. Mater. Trans. A, 46(2015), No. 7, p. 2809. doi: 10.1007/s11661-015-2948-7
      [31]
      K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62(2014), p. 141. doi: 10.1016/j.actamat.2013.09.042
      [32]
      E.L. Huskins, B. Cao, and K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 6, p. 1292. doi: 10.1016/j.msea.2009.11.056
      [33]
      C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al–Al3Ti nanocomposites produced in situ by friction stir processing, Acta Mater., 54(2006), No. 19, p. 5241. doi: 10.1016/j.actamat.2006.06.054

    Catalog


    • /

      返回文章
      返回