留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(13)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  3922
  • HTML全文浏览量:  1267
  • PDF下载量:  379
  • 被引次数: 0
Xiaoyu Zhang, Chunquan Li, Shuilin Zheng, Yonghao Di,  and Zhiming Sun, A review of the synthesis and application of zeolites from coal-based solid wastes, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 1-21. https://doi.org/10.1007/s12613-021-2256-8
Cite this article as:
Xiaoyu Zhang, Chunquan Li, Shuilin Zheng, Yonghao Di,  and Zhiming Sun, A review of the synthesis and application of zeolites from coal-based solid wastes, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 1-21. https://doi.org/10.1007/s12613-021-2256-8
引用本文 PDF XML SpringerLink
特约综述

煤基固废分子筛的合成及其应用研究进展

  • 通讯作者:

    孙志明    E-mail: zhimingsun@cumtb.edu.cn

文章亮点

  • (1) 本文详细介绍了煤基固废合成分子筛的预处理工艺,系统总结了煤基固废分子筛的各种合成工艺及其特点,对以不同煤基固废为原料合成分子筛具有重要指导意义。
  • (2) 本文对煤基固废分子筛在环境污染修复、化学催化、储能材料等领域的应用现状进行了综述,并认为煤基固废分子筛的应用领域应基于材料的理化特性进行科学选定。
  • (3) 本文还展望了煤基固废分子筛的合成与应用发展方向与趋势,提出了碱溶辅助超临界水热晶化法在煤基固废分子筛合成领域的潜力,并认为煤基固废分子筛在挥发性有机污染物(VOCs)净化领域具有良好的应用潜力。
  • 本文首先介绍了以煤矸石和粉煤灰为代表的煤基固废基本理化性质以及煤基固废合成分子筛的预处理工艺。煤基固废可以提供分子筛生成所需的硅、铝组分。但是,煤基固废中硅、铝元素的反应活性有待提高,并且煤基固废中存在许多不利于沸石化过程的杂质。因此,在合成分子筛之前,通常需要对煤基固废进行预处理,包括研磨、煅烧、酸浸等。研磨工艺能够通过粒度细化实现煤基固废比表面积以及杂质暴露量的增加,促使煤基固废表面产生更多缺陷位点,这有利于其进一步溶解。但研磨工艺不能完全活化煤基固废中的有效成分,而高温煅烧则可以更加彻底地活化煤基固废,并除去有机杂质。此外,一些会影响分子筛成核和结晶的碱金属氧化物,如Fe2O3、CaO、MgO及TiO2等,则需要通过酸处理消除。通过上述两种或三种预处理方法的联用,可以实现煤基固废的高效活化。然后,本文系统介绍了以煤基固废为原料合成分子筛的方法,包括水热晶化法、结构导向剂水热晶化法、碱熔辅助水热晶化法、超声或微波辅助水热晶化法、两步法、熔融盐法以及无溶剂法等。通过合理选用合成方法并调整制备参数,能够以各类煤基固废(不同硅铝比的煤矸石、粉煤灰)为原料合成不同类型的分子筛(如Na–X、Na–Y、Na–P、Na–P1、Na–A及方钠石等)。但是,一些具有特殊结构的分子筛(如ZSM-5、SSZ-13及ZK-5等),更易通过结构导向剂水热晶化法合成。当使用石英和长石含量较高的煤矸石或C级粉煤灰合成分子筛时,最好选用具有额外辅助(碱熔、超声波、微波)的方法,以优化煤基固废的沸石化过程。此外,本文还系统介绍了煤基固废分子筛在水污染治理、空气污染治理、重金属污染土壤修复、化学催化和储能材料中的应用现状。低硅铝比的煤基固废分子筛(如Na–X、Na–Y、Na–A、Na–P1等)通常具有较高的阳离子交换容量(CEC),这些分子筛在需要强离子交换能力的领域中具有较高应用潜力;具有高硅铝比的分子筛(如ZSM分子筛)的亲脂性、热稳定性和耐酸性更为出色,因此在某些有机催化过程中具有显著优势;分子筛在离子交换和吸附过程中的孔径效应也需要注意,直径小于分子筛孔径的目标颗粒才更易进入分子筛孔道。最后,本文对煤基固废分子筛的合成与应用发展方向与趋势进行了展望。文章认为,煤基固废分子筛的研究应以其在不同领域的大规模应用为目标导向,在进一步明晰煤基固废沸石化机理的基础上提升煤基固废的转化率及分子筛产品纯度,并注重开发低能耗及原料可循环的煤基固废沸石化工艺;辅助能量的引入对煤基固废的沸石化过程而言是非常重要的,碱溶辅助的超临界水热晶化法可能是一种高效快速的煤基固废沸石化工艺;在煤基固废分子筛应用开拓方面,作者认为,煤基固废分子筛的规模化使用应以商用分子筛的应用领域为参照,在许多商用分子筛的应用领域,煤基固废分子筛已初显替代潜力。

  • Invited Review

    A review of the synthesis and application of zeolites from coal-based solid wastes

    + Author Affiliations
    • Zeolite derived from coal-based solid wastes (coal gangue and coal fly ash) can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization. In this paper, the physicochemical properties of coal gangue and coal fly ash are introduced. The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are also introduced. The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized. Furthermore, the application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated. Finally, we propose an alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites. In addition, more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compound adsorption removal.

    • loading
    • [1]
      BP p.l.c., Statistical Review of World Energy 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
      [2]
      G.F. Wang, Y.X. Xu, and H.W. Ren, Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects, Int. J. Min. Sci. Technol., 29(2019), No. 2, p. 161. doi: 10.1016/j.ijmst.2018.06.005
      [3]
      BP p.l.c., BP Energy Outlook 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-fuel/coal.html
      [4]
      J.Y. Li and J.M. Wang, Comprehensive utilization and environmental risks of coal gangue: A review, J. Cleaner Prod., 239(2019), art. No. 117946. doi: 10.1016/j.jclepro.2019.117946
      [5]
      Z.T. Yao, M.S. Xia, P.K. Sarker, and T. Chen, A review of the alumina recovery from coal fly ash, with a focus in China, Fuel, 120(2014), p. 74. doi: 10.1016/j.fuel.2013.12.003
      [6]
      V. Sibanda, S. Ndlovu, G. Dombo, A. Shemi, and M. Rampou, Towards the utilization of fly ash as a feedstock for smelter grade alumina production: A review of the developments, J. Sustainable Metall., 2(2016), No. 2, p. 167. doi: 10.1007/s40831-016-0048-6
      [7]
      Y.B. Dong, Y. Liu, and H. Lin, Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 861. doi: 10.1007/s12613-018-1635-2
      [8]
      F. Mushtaq, M. Zahid, I.A. Bhatti, S. Nasir, and T. Hussain, Possible applications of coal fly ash in wastewater treatment, J. Environ. Manage., 240(2019), p. 27. doi: 10.1016/j.jenvman.2019.03.054
      [9]
      M. Li, J.X. Zhang, A.L. Li, and N. Zhou, Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control, J. Cleaner Prod., 254(2020), art. No. 120113. doi: 10.1016/j.jclepro.2020.120113
      [10]
      Y.C. Gao, J.G. Jiang, Y. Meng, A. Aihemaiti, T.Y. Ju, X.J. Chen, and F. Yan, A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming, Renew. Energy, 149(2020), p. 786. doi: 10.1016/j.renene.2019.12.096
      [11]
      M. Yoldi, E.G. Fuentes-Ordoñez, S.A. Korili, and A. Gil, Zeolite synthesis from industrial wastes, Microporous Mesoporous Mater., 287(2019), p. 183. doi: 10.1016/j.micromeso.2019.06.009
      [12]
      N.J. Bu, X.M. Liu, S.L. Song, J.H. Liu, Q. Yang, R. Li, F. Zheng, L.H. Yan, Q. Zhen, and J.F. Zhang, Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution, Adv. Powder Technol., 31(2020), No. 7, p. 2699. doi: 10.1016/j.apt.2020.04.035
      [13]
      X.P. He, B. Yao, Y. Xia, H. Huang, Y.P. Gan, and W.K. Zhang, Coal fly ash derived zeolite for highly efficient removal of Ni2+ in waste water, Powder Technol., 367(2020), p. 40. doi: 10.1016/j.powtec.2019.11.037
      [14]
      C. Belviso, State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues, Prog. Energy Combust. Sci., 65(2018), p. 109. doi: 10.1016/j.pecs.2017.10.004
      [15]
      A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M.N. Azevedo, and M. Pires, Synthesis of zeolite Na–P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 139(2015), p. 59. doi: 10.1016/j.fuel.2014.08.016
      [16]
      C. Belviso, Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time?, Ultrason. Sonochem., 43(2018), p. 9. doi: 10.1016/j.ultsonch.2017.12.050
      [17]
      G.Y. Yao, J.J. Lei, X.Y. Zhang, Z.M. Sun, and S.L. Zheng, One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite, Materials, 11(2018), No. 6, art. No. 906. doi: 10.3390/ma11060906
      [18]
      X.B. Li, J.J. Ye, Z.H. Liu, Y.Q. Qiu, L.J. Li, S. Mao, X.C. Wang, and Q. Zhang, Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(II) in aqueous solution, J. Cent. South Univ., 25(2018), No. 1, p. 9. doi: 10.1007/s11771-018-3712-0
      [19]
      S.Q. Xu, D.H. Pan, and G.M. Xiao, Enhanced HMF yield from glucose with H–ZSM-5 catalyst in water-tetrahydrofuran/2-butanol/2-methyltetrahydrofuran biphasic systems, J. Cent. South Univ., 26(2019), No. 11, p. 2974. doi: 10.1007/s11771-019-4229-x
      [20]
      E. Erdem, N. Karapinar, and R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280(2004), No. 2, p. 309. doi: 10.1016/j.jcis.2004.08.028
      [21]
      G.Y. Yao, J.J. Lei, W.Z. Zhang, C.H. Yu, Z.M. Sun, S.L. Zheng, and S. Komarneni, Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus, Environ. Sci. Pollut. Res., 26(2019), No. 3, p. 2782. doi: 10.1007/s11356-018-3750-z
      [22]
      M. Ren, C.Y. Zhang, Y.L. Wang, and J.J. Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1482. doi: 10.1007/s12613-018-1703-7
      [23]
      Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures, Structure Commission of the International Zeolite Association, Chicago [2020-11-10]. http://asia.iza-structure.org/IZA-SC/ftc_table.php
      [24]
      M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36(2010), No. 3, p. 327. doi: 10.1016/j.pecs.2009.11.003
      [25]
      J.L. Chen and X.W. Lu, Synthesis and characterization of zeolites NaA and NaX from coal gangue, J. Mater. Cycles Waste Manage., 20(2018), No. 1, p. 489. doi: 10.1007/s10163-017-0605-5
      [26]
      T.T. Qian and J.H. Li, Synthesis of Na–A zeolite from coal gangue with the in situ crystallization technique, Adv. Powder Technol., 26(2015), No. 1, p. 98. doi: 10.1016/j.apt.2014.08.010
      [27]
      J.M. Zhu, S.H. Guo, and X.H. Li, Facile preparation of a SiO2–Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption, Rsc Adv., 5(2015), No. 125, p. 103656.
      [28]
      Y.X. Guo, K.Z. Yan, L. Cui, F.Q. Cheng, and H.H. Lou, Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction, Int. J. Miner. Process., 131(2014), p. 51. doi: 10.1016/j.minpro.2014.07.001
      [29]
      S.S. Bukhari, J. Behin, H. Kazemian, and S. Rohani, Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review, Fuel, 140(2015), p. 250. doi: 10.1016/j.fuel.2014.09.077
      [30]
      S.C. Chelgani, Exploring relationships of gross calorific value and valuable elements with conventional coal properties for North Korean coals, Int. J. Min. Sci. Technol., 29(2019), No. 6, p. 867. doi: 10.1016/j.ijmst.2019.09.005
      [31]
      P. Kunecki, R. Panek, M. Wdowin, and W. Franus, Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash, Int. J. Miner. Process., 166(2017), p. 69. doi: 10.1016/j.minpro.2017.07.007
      [32]
      T. Yang, C.Y. Han, H. Liu, L. Yang, D.K. Liu, J. Tang and Y.M. Luo, Synthesis of Na–X zeolite from low aluminum coal fly ash: Characterization and high efficient As(V) removal, Adv. Powder Technol., 30(2019), No. 1, p. 199. doi: 10.1016/j.apt.2018.10.023
      [33]
      A. Molina and C. Poole, A comparative study using two methods to produce zeolites from fly ash, Miner. Eng., 17(2004), No. 2, p. 167. doi: 10.1016/j.mineng.2003.10.025
      [34]
      M. Xiao, X.J. Hu, Y. Gong, D. Gao, P. Zhang, Q.X. Liu, Y. Liu, and M.C. Wang, Solid transformation synthesis of zeolites from fly ash, RSC Adv., 5(2015), No. 122, p. 100743. doi: 10.1039/C5RA17856H
      [35]
      H. Javadian, F. Ghorbani, H.A. Tayebi, and S.H. Asl, Study of the adsorption of Cd(II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies, Arab. J. Chem., 8(2015), No. 6, p. 837. doi: 10.1016/j.arabjc.2013.02.018
      [36]
      K. Ojha, N.C. Pradhan, and A.N. Samanta, Zeolite from fly ash: Synthesis and characterization, Bull. Mater. Sci., 27(2004), No. 6, p. 555. doi: 10.1007/BF02707285
      [37]
      J.D. Monzón, A.M. Pereyra, M.S. Conconi, and E.I. Basaldella, Phase transformations during the zeolitization of fly ashes, J. Environ. Chem. Eng., 5(2017), No. 2, p. 1548. doi: 10.1016/j.jece.2017.02.022
      [38]
      Y.X. Guo, K.Z. Yan, L. Cui, and F.Q. Cheng, Improved extraction of alumina from coal gangue by surface mechanically grinding modification, Powder Technol., 302(2016), p. 33. doi: 10.1016/j.powtec.2016.08.034
      [39]
      L.J. Zhang, Y. He, P. Lü, J.H. Peng, S.W. Li, K.H. Chen, S.H. Yin, and L.B. Zhang, Comparison of microwave and conventional heating routes for kaolin thermal activation, J. Cent. South Univ., 27(2020), No. 9, p. 2494. doi: 10.1007/s11771-020-4475-y
      [40]
      S. Sivalingam and S. Sen, Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X, Appl. Surf. Sci., 455(2018), p. 903. doi: 10.1016/j.apsusc.2018.05.222
      [41]
      P. Panitchakarn, N. Laosiripojana, N. Viriya-Umpikul, and P. Pavasant, Synthesis of high-purity Na–A and Na–X zeolite from coal fly ash, J. Air Waste Manage. Assoc., 64(2014), No. 5, p. 586. doi: 10.1080/10962247.2013.859184
      [42]
      X. Querol, N. Moreno, J. C. Umaña, A. Alastuey, E. Hernández, A. López-Soler, and F. Plana, Synthesis of zeolites from coal fly ash: An overview, Int. J. Coal Geol., 50(2002), No. 1-4, p. 413. doi: 10.1016/S0166-5162(02)00124-6
      [43]
      J.L. LaRosa, S. Kwan, and M.W. Grutzeck, Zeolite formation in Class F fly ash blended cement pastes, J. Am. Ceram. Soc., 75(1992), No. 6, p. 1574. doi: 10.1111/j.1151-2916.1992.tb04228.x
      [44]
      F. Mondragon, F. Rincon, L. Sierra, J. Escobar, J. Ramirez, and J. Fernandez, New perspectives for coal ash utilization: Synthesis of zeolitic materials, Fuel, 69(1990), No. 2, p. 263. doi: 10.1016/0016-2361(90)90187-U
      [45]
      G. Steenbruggen and G.G. Hollman, The synthesis of zeolites from fly ash and the properties of the zeolite products, J. Geochem. Explor., 62(1998), No. 1-3, p. 305. doi: 10.1016/S0375-6742(97)00066-6
      [46]
      H. Tanaka, Y. Sakai, and R. Hino, Formation of Na–A and –X zeolites from waste solutions in conversion of coal fly ash to zeolites, Mater. Res. Bull., 37(2002), No. 11, p. 1873. doi: 10.1016/S0025-5408(02)00861-9
      [47]
      Z. Liu, S.Q. Li, L. Li, J.X. Wang, Y. Zhou, and D.M. Wang, One-step high efficiency crystallization of zeolite A from ultra-fine circulating fluidized bed fly ash by hydrothermal synthesis method, Fuel, 257(2019), art. No. 116043. doi: 10.1016/j.fuel.2019.116043
      [48]
      Y. Liu, G.D. Wang, L. Wang, X.L. Li, Q. Luo, and P. Na, Zeolite P synthesis based on fly ash and its removal of Cu(II) and Ni(II) ions, Chin. J. Chem. Eng., 27(2019), No. 2, p. 341. doi: 10.1016/j.cjche.2018.03.032
      [49]
      X.S. Hu, J. Bai, J.Z. Wang, C.P. Li, and W. Xu, Preparation of 4A-zeolite-based Ag nanoparticle composite catalyst and research of the catalytic properties, RSC Adv., 5(2015), No. 4, p. 2968. doi: 10.1039/C4RA14783A
      [50]
      J.M. Zhou, F. Zheng, H. Li, J. Wang, N.J. Bu, P.F. Hu, J.M. Gao, Q. Zhen, S. Bashir, and J.L. Liu, Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance, Chem. Eng. J., 381(2020), art. No. 122698. doi: 10.1016/j.cej.2019.122698
      [51]
      J.D.C. Izidoro, D.A. Fungaro, F.S. dos Santos, and S.B. Wang, Characteristics of Brazilian coal fly ashes and their synthesized zeolites, Fuel Process. Technol., 97(2012), p. 38. doi: 10.1016/j.fuproc.2012.01.009
      [52]
      B. Szala, T. Bajda, J. Matusik, K. Zięba, and B. Kijak, BTX sorption on Na–P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA, Microporous Mesoporous Mater., 202(2015), p. 115. doi: 10.1016/j.micromeso.2014.09.033
      [53]
      M. Inada, Y. Eguchi, N. Enomoto, and J. Hojo, Synthesis of zeolite from coal fly ashes with different silica–alumina composition, Fuel, 84(2005), No. 2-3, p. 299. doi: 10.1016/j.fuel.2004.08.012
      [54]
      C.A. Ríos R, C.D. Williams, and C.L. Roberts, A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites, Fuel, 88(2009), No. 8, p. 1403. doi: 10.1016/j.fuel.2009.02.012
      [55]
      A. Shoumkova and V. Stoyanova, Zeolites formation by hydrothermal alkali activation of coal fly ash from thermal power station “Maritsa 3”, Bulgaria, Fuel, 103(2013), p. 533. doi: 10.1016/j.fuel.2012.07.076
      [56]
      N. Koukouzas, C. Vasilatos, G. Itskos, I. Mitsis, and A. Moutsatsou, Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials, J. Hazard. Mater., 173(2010), No. 1-3, p. 581. doi: 10.1016/j.jhazmat.2009.08.126
      [57]
      J. Xie, Z. Wang, D.Y. Wu, and H.N. Kong, Synthesis and properties of zeolite/hydrated iron oxide composite from coal fly ash as efficient adsorbent to simultaneously retain cationic and anionic pollutants from water, Fuel, 116(2014), p. 71. doi: 10.1016/j.fuel.2013.07.126
      [58]
      N. Murayama, T. Takahashi, K. Shuku, H.H. Lee, and J. Shibata, Effect of reaction temperature on hydrothermal syntheses of potassium type zeolites from coal fly ash, Int. J. Miner. Process., 87(2008), No. 3-4, p. 129. doi: 10.1016/j.minpro.2008.03.001
      [59]
      J.C. Wang, D.K. Li, F.L. Ju, L.N. Han, L.P. Chang, and W.R. Bao, Supercritical hydrothermal synthesis of zeolites from coal fly ash for mercury removal from coal derived gas, Fuel Process. Technol., 136(2015), p. 96. doi: 10.1016/j.fuproc.2014.10.020
      [60]
      A. Grela, M. Hebda, M. Łach, and J. Mikuła, Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash, Microporous Mesoporous Mater., 220(2016), p. 155. doi: 10.1016/j.micromeso.2015.08.036
      [61]
      M. Gross-Lorgouilloux, M. Soulard, P. Caullet, J. Patarin, E. Moleiro, and I. Saude, Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions: Influence of additional silica, Microporous Mesoporous Mater., 127(2010), No. 1-2, p. 41. doi: 10.1016/j.micromeso.2009.06.026
      [62]
      M. Gross-Lorgouilloux, P. Caullet, M. Soulard, J. Patarin, E. Moleiro, and I. Saude, Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions. Mechanisms of crystallisation, Microporous Mesoporous Mater., 131(2010), No. 1-3, p. 407. doi: 10.1016/j.micromeso.2010.01.022
      [63]
      Y. Kobayashi, F. Ogata, T. Nakamura, and N. Kawasaki, Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal, J. Environ. Chem. Eng., 8(2020), No. 2, art. No. 103687. doi: 10.1016/j.jece.2020.103687
      [64]
      L. Zhou, Y.L. Chen, X.H. Zhang, F.M. Tian, and Z.N. Zu, Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds, Mater. Lett., 119(2014), p. 140. doi: 10.1016/j.matlet.2013.12.097
      [65]
      Y.Y. Ji, Y.Q. Wang, B. Xie, and F.S. Xiao, Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites, Comments Inorg. Chem., 36(2016), No. 1, p. 1. doi: 10.1080/02603594.2015.1031375
      [66]
      J.F. Han, X.T. Jin, C.F. Song, Y.L. Bi, Q.L. Liu, C.X. Liu, N. Ji, X.B. Lu, D.G. Ma, and Z.G. Li, Rapid synthesis and NH3-SCR activity of SSZ-13 zeolite via coal gangue, Green Chem., 22(2020), No. 1, p. 219. doi: 10.1039/C9GC02963J
      [67]
      M.M. Liu, L. Hou, B.D. Xi, Y. Zhao, and X.F. Xia, Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash, Appl. Surf. Sci., 273(2013), p. 706. doi: 10.1016/j.apsusc.2013.02.116
      [68]
      Y.G. Chen, S.L. Cong, Q.Q. Wang, H.J. Han, J. Lu, Y. Kang, W. Kang, H.Y. Wang, S.Y. Han, H. Song, and J.J. Zhang, Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al(OH)3 extracted from fly ash as an aluminum source, J. Hazard. Mater., 349(2018), p. 18. doi: 10.1016/j.jhazmat.2018.01.004
      [69]
      R.N.M. Missengue, P. Losch, G. Sedres, N.M. Musyoka, O.O. Fatoba, B. Louis, P. Pale, and L.F. Petrik, Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst, C. R. Chim., 20(2017), No. 1, p. 78. doi: 10.1016/j.crci.2016.04.012
      [70]
      X.Y. Ren, S.J. Liu, R.Y. Qu, L.F. Xiao, P. Hu, H. Song, W.H. Wu, C.H. Zheng, X.C. Wu, and X. Gao, Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption, Microporous Mesoporous Mater., 295(2020), art. No. 109940. doi: 10.1016/j.micromeso.2019.109940
      [71]
      N. Shigemoto, H. Hayashi, and K. Miyaura, Selective formation of Na–X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction, J. Mater. Sci., 28(1993), No. 17, p. 4781. doi: 10.1007/BF00414272
      [72]
      F. Fotovat, H. Kazemian, and M. Kazemeini, Synthesis of Na–A and faujasitic zeolites from high silicon fly ash, Mater. Res. Bull., 44(2009), No. 4, p. 913. doi: 10.1016/j.materresbull.2008.08.008
      [73]
      H. Kazemian, Z. Naghdali, T. Ghaffari Kashani, and F. Farhadi, Conversion of high silicon fly ash to Na–P1 zeolite: Alkaline fusion followed by hydrothermal crystallization, Adv. Powder Technol., 21(2010), No. 3, p. 279. doi: 10.1016/j.apt.2009.12.005
      [74]
      A. Medina, P. Gamero, J.M. Almanza, A. Vargas, A. Montoya, G. Vargas, and M. Izquierdo, Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic(V) adsorption, J. Hazard. Mater., 181(2010), No. 1-3, p. 91. doi: 10.1016/j.jhazmat.2010.04.102
      [75]
      Q.L. Ge, M. Moeen, Q. Tian, J.J. Xu, and K.Q. Feng, Highly effective removal of Pb2+ in aqueous solution by Na–X zeolite derived from coal gangue, Environ. Sci. Pollut. Res., 27(2020), No. 7, p. 7398. doi: 10.1007/s11356-019-07412-z
      [76]
      C. Belviso, F. Cavalcante, S. Di Gennaro, A. Lettino, A. Palma, P. Ragone, and S. Fiore, Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite, J. Environ. Manage., 137(2014), p. 16. doi: 10.1016/j.jenvman.2014.01.040
      [77]
      C. Belviso, L.C. Giannossa, F.J. Huertas, A. Lettino, A. Mangone, and S. Fiore, Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures, Microporous Mesoporous Mater., 212(2015), p. 35. doi: 10.1016/j.micromeso.2015.03.012
      [78]
      I.V. Joseph, L. Tosheva, and A.M. Doyle, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, J. Environ. Chem. Eng., 8(2020), No. 4, art. No. 103895. doi: 10.1016/j.jece.2020.103895
      [79]
      G. Verrecchia, L. Cafiero, B. de Caprariis, A. Dell'Era, I. Pettiti, R. Tuffi, and M. Scarsella, Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption, Fuel, 276(2020), art. No. 118041. doi: 10.1016/j.fuel.2020.118041
      [80]
      L.Y. Yang, X.M. Qian, P. Yuan, H. Bai, T. Miki, F.X. Men, H. Li, and T. Nagasaka, Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3, J. Clean. Prod., 212(2019), p. 250. doi: 10.1016/j.jclepro.2018.11.259
      [81]
      J.D.C. Izidoro, D.A. Fungaro, J.E. Abbott, and S.B. Wang, Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems, Fuel, 103(2013), p. 827. doi: 10.1016/j.fuel.2012.07.060
      [82]
      V.K. Jha, M. Nagae, M. Matsuda, and M. Miyake, Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems, J. Environ. Manage., 90(2009), No. 8, p. 2507. doi: 10.1016/j.jenvman.2009.01.009
      [83]
      J.L. Chen and X.W. Lu, Equilibrium and kinetics studies of Cd(II) sorption on zeolite NaX synthesized from coal gangue, J. Water Reuse Desalin., 8(2018), No. 1, p. 94. doi: 10.2166/wrd.2016.137
      [84]
      Z.T. Yao, M.S. Xia, Y. Ye, and L. Zhang, Synthesis of zeolite Li–ABW from fly ash by fusion method, J. Hazard. Mater., 170(2009), No. 2-3, p. 639. doi: 10.1016/j.jhazmat.2009.05.018
      [85]
      V. Berkgaut and A. Singer, High capacity cation exchanger by hydrothermal zeolitization of coal fly ash, Appl. Clay Sci., 10(1996), No. 5, p. 369. doi: 10.1016/0169-1317(95)00033-X
      [86]
      N.M. Musyoka, L. Petrik, and E. Hums, Synthesis of zeolite A, X and P from a South African coal fly ash, Adv. Mater. Res., 512–515(2012), p. 1757.
      [87]
      N. Jusoh, Y.F. Yeong, M. Mohamad, K.K. Lau, and A. M Shariff, Rapid-synthesis of zeolite T via sonochemical-assisted hydrothermal growth method, Ultrason. Sonochem., 34(2017), p. 273. doi: 10.1016/j.ultsonch.2016.05.033
      [88]
      J.F. Han, Y. Ha, M.Y. Guo, P.P. Zhao, Q.L. Liu, C.X. Liu, C.F. Song, N. Ji, X.B. Lu, D.G. Ma, and Z.G. Li, Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method, Ultrason. Sonochem., 59(2019), art. No. 104703. doi: 10.1016/j.ultsonch.2019.104703
      [89]
      S. Sivalingam and S. Sen, Swift sono-hydrothermal synthesis of pure NaX nanocrystals with improved sorption capacity from industrial resources, Appl. Surf. Sci., 463(2019), p. 190. doi: 10.1016/j.apsusc.2018.08.019
      [90]
      T. Aldahri, J. Behin, H. Kazemian, and S. Rohani, Synthesis of zeolite Na–P from coal fly ash by thermo-sonochemical treatment, Fuel, 182(2016), p. 494. doi: 10.1016/j.fuel.2016.06.019
      [91]
      S. Boycheva, I. Marinov, S. Miteva, and D. Zgureva, Conversion of coal fly ash into nanozeolite Na–X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation, Sustainable Chem. Pharm., 15(2020), art. No. 100217. doi: 10.1016/j.scp.2020.100217
      [92]
      X. Querol, A. Alastuey, A. López-Soler, F. Plana, J.M. Andrés, R. Juan, P. Ferrer, and C.R. Ruiz, A fast method for recycling fly ash: Microwave-assisted zeolite synthesis, Environ. Sci. Technol., 31(1997), No. 9, p. 2527. doi: 10.1021/es960937t
      [93]
      K. Fukui, K. Kanayama, T. Yamamoto, and H. Yoshida, Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment, Adv. Powder Technol., 18(2007), No. 4, p. 381. doi: 10.1163/156855207781389483
      [94]
      M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, and J. Hojo, Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process, Fuel, 84(2005), No. 12-13, p. 1482. doi: 10.1016/j.fuel.2005.02.002
      [95]
      J.K. Kim and H.D. Lee, Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash, J. Ind. Eng. Chem., 15(2009), No. 5, p. 736. doi: 10.1016/j.jiec.2009.09.055
      [96]
      G.G. Hollman, G. Steenbruggen, and M. Janssen-Jurkovičová, A two-step process for the synthesis of zeolites from coal fly ash, Fuel, 78(1999), No. 10, p. 1225. doi: 10.1016/S0016-2361(99)00030-7
      [97]
      H. Tanaka, H. Eguchi, S. Fujimoto, and R. Hino, Two-step process for synthesis of a single phase Na–A zeolite from coal fly ash by dialysis, Fuel, 85(2006), No. 10-11, p. 1329. doi: 10.1016/j.fuel.2005.12.022
      [98]
      C.F. Wang, J.S. Li, X. Sun, L.J. Wang, and X.Y. Sun, Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals, J. Environ. Sci., 21(2009), No. 1, p. 127. doi: 10.1016/S1001-0742(09)60022-X
      [99]
      H. Tanaka, A. Fujii, S. Fujimoto, and Y. Tanaka, Microwave-assisted two-step process for the synthesis of a single-phase Na–A zeolite from coal fly ash, Adv. Powder Technol., 19(2008), No. 1, p. 83. doi: 10.1163/156855208X291783
      [100]
      A. Iqbal, H. Sattar, R. Haider, and S. Munir, Synthesis and characterization of pure phase zeolite 4A from coal fly ash, J. Cleaner Prod., 219(2019), p. 258. doi: 10.1016/j.jclepro.2019.02.066
      [101]
      V.L.V. Fallavena, M. Pires, S.F. Ferrarini, and A.P.B. Silveira, Evaluation of zeolite/backfill blend for acid mine drainage remediation in coal mine, Energy Fuels, 32(2018), No. 2, p. 2019. doi: 10.1021/acs.energyfuels.7b03322
      [102]
      M.R. El-Naggar, A.M. El-Kamash, M.I. El-Dessouky, and A.K. Ghonaim, Two-step method for preparation of NaA–X zeolite blend from fly ash for removal of cesium ions, J. Hazard. Mater., 154(2008), No. 1-3, p. 963. doi: 10.1016/j.jhazmat.2007.10.115
      [103]
      S.S. Bukhari, S. Rohani, and H. Kazemian, Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash, Ultrason. Sonochem., 28(2016), p. 47. doi: 10.1016/j.ultsonch.2015.06.031
      [104]
      Y.N. Zhang, Y.G. Chen, W. Kang, H.J. Han, H. Song, C.L. Zhang, H.Y. Wang, X.Q. Yang, X.Z. Gong, C.X. Zhai, J.T. Deng, and L.L. Ai, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Cleaner Prod., 258(2020), art. No. 120736. doi: 10.1016/j.jclepro.2020.120736
      [105]
      M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system, Microporous Mesoporous Mater., 37(2000), No. 1-2, p. 81. doi: 10.1016/S1387-1811(99)00196-1
      [106]
      M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, Molten-salt method for the synthesis of zeolitic materials: II. Characterization of zeolitic materials, Microporous Mesoporous Mater., 37(2000), No. 1-2, p. 91. doi: 10.1016/S1387-1811(99)00195-X
      [107]
      Y. Liu, C.J. Yan, J.J. Zhao, Z.H. Zhang, H.Q. Wang, S. Zhou, and L.M. Wu, Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water, J. Cleaner Prod., 202(2018), p. 11. doi: 10.1016/j.jclepro.2018.08.128
      [108]
      R.K. Vempati, R. Borade, R.S. Hegde, and S. Komarneni, Template free ZSM-5 from siliceous rice hull ash with varying C contents, Microporous Mesoporous Mater., 93(2006), No. 1-3, p. 134. doi: 10.1016/j.micromeso.2006.02.008
      [109]
      S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: A review, J. Hazard. Mater., 97(2003), No. 1-3, p. 219. doi: 10.1016/S0304-3894(02)00263-7
      [110]
      X.W. Lu, D.Q. Shi, and J.L. Chen, Sorption of Cu2+ and Co2+ using zeolite synthesized from coal gangue: isotherm and kinetic studies, Environ. Earth Sci., 76(2017), No. 17, p. 591. doi: 10.1007/s12665-017-6923-z
      [111]
      Y.M. Sui, D.Y. Wu, D.L. Zhang, X.Y. Zheng, Z.B. Hu, and H.N. Kong, Factors affecting the sorption of trivalent chromium by zeolite synthesized from coal fly ash, J. Colloid Interface Sci., 322(2008), No. 1, p. 13. doi: 10.1016/j.jcis.2008.02.048
      [112]
      D.Y. Wu, Y.M. Sui, S.B. He, X.Z. Wang, C.J. Li, and H.N. Kong, Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash, J. Hazard. Mater., 155(2008), No. 3, p. 415. doi: 10.1016/j.jhazmat.2007.11.082
      [113]
      M. Nascimento, P.S.M. Soares, and V.P. de Souza, Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method, Fuel, 88(2009), No. 9, p. 1714. doi: 10.1016/j.fuel.2009.01.007
      [114]
      R. Apiratikul and P. Pavasant, Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash, Chem. Eng. J., 144(2008), No. 2, p. 245. doi: 10.1016/j.cej.2008.01.038
      [115]
      M. Visa, Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment, Powder Technol., 294(2016), p. 338. doi: 10.1016/j.powtec.2016.02.019
      [116]
      Z. Tauanov, P.E. Tsakiridis, S.V. Mikhalovsky, and V.J. Inglezakis, Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water, J. Environ. Manage., 224(2018), p. 164. doi: 10.1016/j.jenvman.2018.07.049
      [117]
      T.M. Mokgehle, H. Richards, L. Chimuka, W.M. Gitari, and N.T. Tavengwa, Sulphates removal from AMD using CFA hydrothermally treated zeolites in column studies, Miner. Eng., 141(2019), art. No. 105851. doi: 10.1016/j.mineng.2019.105851
      [118]
      C.F. Wang, J.S. Li, L.J. Wang, X.Y. Sun, and J.J. Huang, Adsorption of dye from wastewater by zeolites synthesized from fly ash: Kinetic and equilibrium studies, Chin. J. Chem. Eng., 17(2009), No. 3, p. 513. doi: 10.1016/S1004-9541(08)60239-6
      [119]
      M. Visa and A.M. Chelaru, Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment, Appl. Surf. Sci., 303(2014), p. 14. doi: 10.1016/j.apsusc.2014.02.025
      [120]
      G. Atun, G. Hisarlı, A.E. Kurtoğlu, and N. Ayar, A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash, J. Hazard. Mater., 187(2011), No. 1-3, p. 562. doi: 10.1016/j.jhazmat.2011.01.075
      [121]
      S. Sivalingam and S. Sen, Efficient removal of textile dye using nanosized fly ash derived zeolite-x: Kinetics and process optimization study, J. Taiwan Inst. Chem. Eng., 96(2019), p. 305. doi: 10.1016/j.jtice.2018.10.032
      [122]
      J.G. Murnane, R.B. Brennan, M.G. Healy, and O. Fenton, Use of zeolite with alum and polyaluminum chloride amendments to mitigate runoff losses of phosphorus, nitrogen, and suspended solids from agricultural wastes applied to grassed soils, J. Environ. Qual., 44(2015), No. 5, p. 1674. doi: 10.2134/jeq2014.07.0319
      [123]
      X.D. Ji, M.L. Zhang, Y.J. Wang, Y.C. Song, Y.Y. Ke, and Y.Q. Wang, Immobilization of ammonium and phosphate in aqueous solution by zeolites synthesized from fly ashes with different compositions, J. Ind. Eng. Chem., 22(2015), p. 1. doi: 10.1016/j.jiec.2014.06.017
      [124]
      L. Bandura, D. Kołodyńska, and W. Franus, Adsorption of BTX from aqueous solutions by Na–P1 zeolite obtained from fly ash, Process. Saf. Environ. Prot., 109(2017), p. 214. doi: 10.1016/j.psep.2017.03.036
      [125]
      R. Juan, S. Hernández, J.M. Andrés, and C. Ruiz, Ion exchange uptake of ammonium in wastewater from a Sewage Treatment Plant by zeolitic materials from fly ash, J. Hazard. Mater., 161(2009), No. 2-3, p. 781. doi: 10.1016/j.jhazmat.2008.04.025
      [126]
      X.Y. Chen, K. Wendell, J. Zhu, J.L. Li, X.X. Yu, and Z.J. Zhang, Synthesis of nano-zeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater, Bioresour. Technol., 110(2012), p. 79. doi: 10.1016/j.biortech.2012.01.096
      [127]
      Y. Luna, E. Otal, L.F. Vilches, J. Vale, X. Querol, and C. Fernández Pereira, Use of zeolitised coal fly ash for landfill leachate treatment: A pilot plant study, Waste Manage., 27(2007), No. 12, p. 1877. doi: 10.1016/j.wasman.2006.10.016
      [128]
      W. Feng, Z.J. Wan, J. Daniels, Z.K. Li, G.K. Xiao, J.L. Yu, D. Xu, H. Guo, D.K. Zhang, E.F. May, and G. Li, Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications, J. Cleaner Prod., 202(2018), p. 390. doi: 10.1016/j.jclepro.2018.08.140
      [129]
      T.M. Mokgehle, W.M. Gitari, and N.T. Tavengwa, Synthesis of di-carboxylic acid functionalized zeolites from coal fly ash for Cd(II) removal from acid mine drainage using column studies approach, J. Environ. Chem. Eng., 7(2019), No. 6, art. No. 103473. doi: 10.1016/j.jece.2019.103473
      [130]
      G.I. Supelano, J.A. Gómez Cuaspud, L.C. Moreno-Aldana, C. Ortiz, C.A. Trujillo, C.A. Palacio, C.A. Parra Vargas, and J.A. Mejía Gómez, Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue, Fuel, 263(2020), art. No. 116800. doi: 10.1016/j.fuel.2019.116800
      [131]
      L.D. Lin, Y. Lin, C.J. Li, D.Y. Wu, and H.N. Kong, Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water, Int. J. Miner. Process., 148(2016), p. 32. doi: 10.1016/j.minpro.2016.01.010
      [132]
      B.H. Zhang, D.Y. Wu, C. Wang, S.B. He, Z.J. Zhang, and H.N. Kong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment, J. Environ. Sci., 19(2007), No. 5, p. 540. doi: 10.1016/S1001-0742(07)60090-4
      [133]
      D. Wood, S. Shaw, T. Cawte, E. Shanen, and B. van Heyst, An overview of photocatalyst immobilization methods for air pollution remediation, Chem. Eng. J., 391(2020), art. No. 123490. doi: 10.1016/j.cej.2019.123490
      [134]
      Y.S. Wang, T. Du, X. Fang, D. Meng, G. Li, and L.Y. Liu, Adsorption of carbon dioxide and water vapor on fly-ash based ETS-10, Korean J. Chem. Eng., 35(2018), No. 8, p. 1642. doi: 10.1007/s11814-018-0078-9
      [135]
      G.N. Muriithi, L.F. Petrik, and F.J. Doucet, Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash, J. CO2 Util., 36(2020), p. 220.
      [136]
      K.M. Lee and Y.M. Jo, Synthesis of zeolite from waste fly ash for adsorption of CO2, J. Mater. Cycles Waste Manage., 12(2010), No. 3, p. 212. doi: 10.1007/s10163-010-0290-0
      [137]
      A. Ściubidło and I. Majchrzak-Kucęba, Exhaust gas purification process using fly ash-based sorbents, Fuel, 258(2019), art. No. 116126. doi: 10.1016/j.fuel.2019.116126
      [138]
      G. Li, B.D. Wang, H.Y. Wang, J. Ma, W.Q. Xu, Y.L. Li, Y.F. Han, and Q. Sun, Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR, Catal. Commun., 108(2018), p. 82. doi: 10.1016/j.catcom.2018.01.035
      [139]
      S. Boycheva, D. Zgureva, M. Václavíková, Y. Kalvachev, H. Lazarova, and M. Popova, Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation, J. Hazard. Mater., 361(2019), p. 374. doi: 10.1016/j.jhazmat.2018.07.020
      [140]
      M. Popova, S. Boycheva, H. Lazarova, D. Zgureva, K. Lázár, and Á. Szegedi, VOC oxidation and CO2 adsorption on dual adsorption/catalytic system based on fly ash zeolites, Catal. Today, 357(2020), p. 518. doi: 10.1016/j.cattod.2019.06.070
      [141]
      Z.Y. Li, Z.W. Ma, T.J. van der Kuijp, Z.W. Yuan, and L. Huang, A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Sci. Total Environ., 468–469(2014), p. 843.
      [142]
      Y. Hamid, L. Tang, M.I. Sohail, X.R. Cao, B. Hussain, M.Z. Aziz, M. Usman, Z.L. He, and X.E. Yang, An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain, Sci. Total Environ., 660(2019), p. 80. doi: 10.1016/j.scitotenv.2018.12.419
      [143]
      X. Querol, A. Alastuey, N. Moreno, E. Alvarez-Ayuso, A. Garcı́a-Sánchez, J. Cama, C. Ayora, and M. Simón, Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash, Chemosphere, 62(2006), No. 2, p. 171. doi: 10.1016/j.chemosphere.2005.05.029
      [144]
      R. Terzano, M. Spagnuolo, L. Medici, F. Tateo, and P. Ruggiero, Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation, Appl. Clay Sci., 29(2005), No. 2, p. 99. doi: 10.1016/j.clay.2004.12.006
      [145]
      P. Horta-Fraijo, E. Smolentseva, A. Simakov, M. José-Yacaman, and B. Acosta, Ag nanoparticles in A4 zeolite as efficient catalysts for the 4-nitrophenol reduction, Microporous Mesoporous Mater., 312(2021), art. No. 110707. doi: 10.1016/j.micromeso.2020.110707
      [146]
      N. Czuma, K. Zarębska, M. Motak, M.E. Gálvez, and P. Da Costa, Ni/zeolite X derived from fly ash as catalysts for CO2 methanation, Fuel, 267(2020), art. No. 117139. doi: 10.1016/j.fuel.2020.117139
      [147]
      M.C. Manique, L.V. Lacerda, A.K. Alves, and C.P. Bergmann, Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst, Fuel, 190(2017), p. 268. doi: 10.1016/j.fuel.2016.11.016
      [148]
      N.M. Musyoka, J.W. Ren, H.W. Langmi, B.C. North, and M. Mathe, A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives, Int. J. Hydrogen Energy, 40(2015), No. 37, p. 12705. doi: 10.1016/j.ijhydene.2015.07.085
      [149]
      J.M. Lim, J. Park, J.T. Park, and S. Bae, Preparation of quasi-solid-state electrolytes using a coal fly ash derived zeolite–X and –A for dye-sensitized solar cells, J. Ind. Eng. Chem., 71(2019), p. 378. doi: 10.1016/j.jiec.2018.11.049

    Catalog


    • /

      返回文章
      返回