留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 10
Oct.  2021

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1289
  • HTML全文浏览量:  424
  • PDF下载量:  63
  • 被引次数: 0
Hua-bao Yang, Liang Wu, Bin Jiang, Bin Lei, Ming Yuan, Hong-mei Xie, Andrej Atrens, Jiang-feng Song, Guang-sheng Huang,  and Fu-sheng Pan, Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1705-1715. https://doi.org/10.1007/s12613-021-2258-6
Cite this article as:
Hua-bao Yang, Liang Wu, Bin Jiang, Bin Lei, Ming Yuan, Hong-mei Xie, Andrej Atrens, Jiang-feng Song, Guang-sheng Huang,  and Fu-sheng Pan, Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1705-1715. https://doi.org/10.1007/s12613-021-2258-6
引用本文 PDF XML SpringerLink
研究论文

基于Mg–Sn–Y合金阳极的镁-空气电池的放电性能

  • Research Article

    Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries

    + Author Affiliations
    • Mg–Sn–Y alloys with different Sn contents (wt%) were assessed as anode candidates for Mg-air batteries. The relationship between microstructure (including the second phase, grain size, and texture) and discharge properties of the Mg–Sn–Y alloys was examined using microstructure observation, electrochemical measurements, and galvanostatic discharge tests. The Mg–0.7Sn–1.4Y alloy had a high steady discharge voltage of 1.5225 V and a high anodic efficiency of 46.6% at 2.5 mA·cm−2. These good properties were related to its microstructure: small grain size of 3.8 μm, uniform distribution of small second phase particles of 0.6 μm, and a high content (vol%) of (

      \begin{document}$ 11\overline{2}0 $\end{document}

      )/(

      $ 10\overline{1}0 $

      ) orientated grains. The scanning Kelvin probe force microscopy (SKPFM) indicated that the Sn3Y5 and MgSnY phases were effective cathodes causing micro-galvanic corrosion which promoted the dissolution of Mg matrix during the discharge process.

    • loading
    • [1]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [2]
      S. Amani and G. Faraji, Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 672. doi: 10.1007/s12613-018-1614-7
      [3]
      A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
      [4]
      H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800. doi: 10.1007/s12613-018-1628-1
      [5]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [6]
      Q.H. Wang, Y.Q. Shen, B. Jiang, A.T. Tang, J.F. Song, Z.T. Jiang, T.H. Yang, G.S. Huang, and F.S. Pan, A micro-alloyed Mg–Sn–Y alloy with high ductility at room temperature, Mater. Sci. Eng. A, 735(2018), p. 131. doi: 10.1016/j.msea.2018.08.035
      [7]
      X.B. Zhang, J.W. Dai, R.F. Zhang, Z.X. Ba, and N. Birbilis, Corrosion behavior of Mg–3Gd–1Zn–0.4Zr alloy with and without stacking faults, J. Magnesium Alloys, 7(2019), No. 2, p. 240. doi: 10.1016/j.jma.2019.02.009
      [8]
      A. Bahmani, S. Arthanari, and K.S. Shin, Corrosion behavior of Mg–Mn–Ca alloy: Influences of Al, Sn and Zn, J. Magnesium Alloys, 7(2019), No. 1, p. 38. doi: 10.1016/j.jma.2018.11.004
      [9]
      M. Sabbaghian, R. Mahmudi, and K.S. Shin, Effect of texture and twinning on mechanical properties and corrosion behavior of an extruded biodegradable Mg–4Zn alloy, J. Magnesium Alloys, 7(2019), No. 4, p. 707. doi: 10.1016/j.jma.2019.11.001
      [10]
      J.H. Lee, B.J. Kwak, T. Kong, S.H. Park, and T. Lee, Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains, J. Magnesium Alloys, 7(2019), No. 3, p. 381. doi: 10.1016/j.jma.2019.06.002
      [11]
      R. Radha and D. Sreekanth, Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg–Sn alloy composite by squeeze casting for biomedical applications, J. Magnesium Alloys, 8(2020), No. 2, p. 452. doi: 10.1016/j.jma.2019.05.010
      [12]
      T. Kong, B.J. Kwak, J. Kim, J.H. Lee, S.H. Park, J.H. Kim, Y.H. Moon, H.S. Yoon, and T. Lee, Tailoring strength–ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing, J. Magnesium Alloys, 8(2020), No. 1, p. 163. doi: 10.1016/j.jma.2019.11.005
      [13]
      M.G. Acharya and A.N. Shetty, The corrosion behavior of AZ31 alloy in chloride and sulfate media – A comparative study through electrochemical investigations, J. Magnesium Alloys, 7(2019), No. 1, p. 98. doi: 10.1016/j.jma.2018.09.003
      [14]
      Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets, J. Magnesium Alloys, 7(2019), No. 4, p. 545. doi: 10.1016/j.jma.2019.09.007
      [15]
      Y.F. Chai, C. He, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Influence of minor Ce additions on the microstructure and mechanical properties of Mg–1.0Sn–0.6Ca alloy, J. Mater. Sci. Technol., 37(2020), p. 26. doi: 10.1016/j.jmst.2019.07.036
      [16]
      Q.H. Wang, Y. Song, B. Jiang, J. Fu, A.T. Tang, H.R. Sheng, J.F. Song, D.F. Zhang, Z.T. Jiang, G.S. Huang, and F.S. Pan, Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion, Mater. Sci. Eng. A, 769(2020), art. No. 138476. doi: 10.1016/j.msea.2019.138476
      [17]
      J. Chen, L. Wu, X.X. Ding, Q. Liu, X. Dai, J.F. Song, B. Jiang, A. Atrens, and F.S. Pan, Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31, J. Mater. Sci. Technol., 64(2021), p. 10. doi: 10.1016/j.jmst.2019.10.007
      [18]
      L. Wu, X.X. Ding, Z.C. Zheng, Y.L. Ma, A. Atrens, X.B. Chen, Z.H. Xie, D. Sun, and F.S. Pan, Fabrication and characterization of an actively protective Mg–Al LDHs/Al2O3 composite coating on magnesium alloy AZ31, Appl. Surf. Sci., 487(2019), p. 558. doi: 10.1016/j.apsusc.2019.05.115
      [19]
      L. Wu, X.X. Ding, Z.C. Zheng, A.T. Tang, G. Zhang, A. Atrens, and F.S. Pan, Doublely-doped Mg–Al–Ce–V2O74− LDH composite film on magnesium alloy AZ31 for anticorrosion, J. Mater. Sci. Technol., 64(2021), p. 66. doi: 10.1016/j.jmst.2019.09.031
      [20]
      G. Zhang, L. Wu, A.T. Tang, Y.L. Ma, G.L. Song, D.J. Zheng, B. Jiang, A. Atrens, and F.S. Pan, Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31, Corros. Sci., 139(2018), p. 370. doi: 10.1016/j.corsci.2018.05.010
      [21]
      L. Wu, J.H. Wu, Z.Y. Zhang, C. Zhang, Y.X. Zhang, A.T. Tang, L.J. Li, G. Zhang, Z.C. Zheng, A. Atrens, and F.S. Pan, Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg–Al LDH films on anodized magnesium alloy, Appl. Surf. Sci., 487(2019), p. 569. doi: 10.1016/j.apsusc.2019.05.121
      [22]
      Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnesium Alloys, (2020)
      [23]
      X.J. Gu, W.L. Cheng, S.M. Cheng, H. Yu, Z.F. Wang, H.X. Wang, and L.F. Wang, Discharge behavior of Mg–Sn–Zn–Ag alloys with different Sn contents as anodes for Mg-air batteries, J. Electrochem. Soc., 167(2020), No. 2, art. No. 020501. doi: 10.1149/1945-7111/ab6284
      [24]
      N.G. Wang, W.P. Li, Y.X. Huang, G. Wu, M.C. Hu, G.Z. Li, and Z.C. Shi, Wrought Mg–Al–Pb–RE alloy strips as the anodes for Mg-air batteries, J. Power Sources, 436(2019), art. No. 226855. doi: 10.1016/j.jpowsour.2019.226855
      [25]
      M. Deng, L.Q. Wang, D. Höche, S.V. Lamaka, D. Snihirova, B. Vaghefinazari, and M.L. Zheludkevich, Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries, J. Power Sources, 441(2019), art. No. 227201. doi: 10.1016/j.jpowsour.2019.227201
      [26]
      N.G. Wang, Y.C. Mu, W.H. Xiong, J.C. Zhang, Q. Li, and Z.C. Shi, Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes, Corros. Sci., 144(2018), p. 107. doi: 10.1016/j.corsci.2018.08.003
      [27]
      J.L. Wu, R.C. Wang, Y. Feng, and C.Q. Peng, Effect of hot rolling on the microstructure and discharge properties of Mg–1.6wt%Hg–2wt%Ga alloy anodes, J. Alloys Compd., 765(2018), p. 736. doi: 10.1016/j.jallcom.2018.05.070
      [28]
      X. Liu, Z.C. Guo, J.L. Xue, and P.J. Zhang, The role of Al2Ca and Al2(Sm,Ca,La) particles in the microstructures and electrochemical discharge performance of as-extruded Mg–3wt.%Al–1wt.%Zn-based alloys for primary Mg-air batteries, Int. J. Energy Res., 43(2019), No. 9, p. 4569. doi: 10.1002/er.4586
      [29]
      X. Liu and J.L. Xue, The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31–Gd anode for Mg-air batteries, Energy, 189(2019), art. No. 116314. doi: 10.1016/j.energy.2019.116314
      [30]
      Y.C. Zhao, G.S. Huang, C. Zhang, L. Chen, T.Z. Han, and F.S. Pan, Effect of texture on the performance of Mg-air battery based on rolled Mg–3Al–1Zn alloy sheet, Rare Met. Mater. Eng., 47(2018), No. 4, p. 1064. doi: 10.1016/S1875-5372(18)30121-8
      [31]
      S.H. Kim, J.H. Park, H.S. Kim, J.J. Kim, and O.D. Kwon, Effect of Al and Sn on discharge behavior of Mg alloy as anode for Mg-air battery, [in] K.N. Solanki, D. Orlov, A. Singh, and N.R. Neelameggham, eds., Magnesium Technology 2017, Springer, Cham, 2017, p. 413.
      [32]
      H.Q. Xiong, K. Yu, X. Yin, Y.L. Dai, Y. Yan, and H.L. Zhu, Effects of microstructure on the electrochemical discharge behavior of Mg–6wt%Al–1wt%Sn alloy as anode for Mg-air primary battery, J. Alloys Compd., 708(2017), p. 652. doi: 10.1016/j.jallcom.2016.12.172
      [33]
      M. Deng, D. Höche, S.V. Lamaka, L.Q. Wang, and M.L. Zheludkevich, Revealing the impact of second phase morphology on discharge properties of binary Mg–Ca anodes for primary Mg-air batteries, Corros. Sci., 153(2019), p. 225. doi: 10.1016/j.corsci.2019.03.050
      [34]
      M. Deng, D. Höche, S.V. Lamaka, D. Snihirova, and M.L. Zheludkevich, Mg–Ca binary alloys as anodes for primary Mg-air batteries, J. Power Sources, 396(2018), p. 109. doi: 10.1016/j.jpowsour.2018.05.090
      [35]
      Y.F. Song, J.L. Ma, Y.Q. Li, G.X. Wang, C.H. Qin, and H.R. Stock, Effects of second phases in anode materials on discharge performance of Mg-air batteries, Ionics, 25(2019), No. 12, p. 5899. doi: 10.1007/s11581-019-03144-9
      [36]
      N.G. Wang, R.C. Wang, C.Q. Peng, B. Peng, Y. Feng, and C.W. Hu, Discharge behaviour of Mg–Al–Pb and Mg–Al–Pb–In alloys as anodes for Mg-air battery, Electrochim. Acta, 149(2014), p. 193. doi: 10.1016/j.electacta.2014.10.053
      [37]
      Y. Feng, W.H. Xiong, J.C. Zhang, R.C. Wang, and N.G. Wang, Electrochemical discharge performance of the Mg–Al–Pb–Ce–Y alloy as the anode for Mg-air batteries, J. Mater. Chem. A, 4(2016), No. 22, p. 8658. doi: 10.1039/C6TA02574A
      [38]
      X. Liu, J.L. Xue, P.J. Zhang, and Z.J. Wang, Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries, J. Power Sources, 414(2019), p. 174. doi: 10.1016/j.jpowsour.2018.12.092
      [39]
      X.D. Li, H.M. Lu, S.Q. Yuan, J.J. Bai, J.R. Wang, Y. Cao, and Q.S. Hong, Performance of Mg–9Al–1In alloy as anodes for Mg-air batteries in 3.5wt% NaCl solutions, J. Electrochem. Soc., 164(2017), No. 13, p. A3131. doi: 10.1149/2.0971713jes
      [40]
      Y.B. Ma, N. Li, D.Y. Li, M.L. Zhang, and X.M. Huang, Performance of Mg–14Li–1Al–0.1Ce as anode for Mg-air battery, J. Power Sources, 196(2011), No. 4, p. 2346. doi: 10.1016/j.jpowsour.2010.07.097
      [41]
      X. Liu, J.L. Xue, and S.Z. Liu, Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities, Mater. Des., 160(2018), p. 138. doi: 10.1016/j.matdes.2018.09.011
      [42]
      X. Liu, S.Z. Liu, and J.L. Xue, Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries, J. Power Sources, 396(2018), p. 667. doi: 10.1016/j.jpowsour.2018.06.085
      [43]
      Y.Q. Li, J.L. Ma, G.X. Wang, F.Z. Ren, Y.J. Zhu, Y.F. Song, and J.L. Zhang, Effect by adding Ce and In to Mg–6Al Alloy as anode on performance of Mg-air batteries, Mater. Res. Express, 6(2019), No. 6, art. No. 066315. doi: 10.1088/2053-1591/ab0fb6
      [44]
      Y.P. Wu, Z.F. Wang, Y. Liu, G.F. Li, S.H. Xie, H. Yu, and H.Q. Xiong, AZ61 and AZ61–La alloys as anodes for Mg-air battery, J. Mater. Eng. Perform., 28(2019), No. 4, p. 2006. doi: 10.1007/s11665-019-03985-5
      [45]
      X.R. Chen, Q. Zou, Q.C. Le, J. Hou, R.Z. Guo, H.N. Wang, C.L. Hu, L. Bao, T. Wang, D.Z. Zhao, F.X. Yu, and A. Atrens, The quasicrystal of Mg–Zn–Y on discharge and electrochemical behaviors as the anode for Mg-air battery, J. Power Sources, 451(2020), art. No. 227807. doi: 10.1016/j.jpowsour.2020.227807
      [46]
      S.Q. Yuan, H.M. Lu, Z.G. Sun, L. Fan, and W. Zhang, Electrochemical performance of Mg–3Al modified with Ga, In and Sn as anodes for Mg-air battery, J. Electrochem. Soc., 163(2016), No. 7, p. A1181. doi: 10.1149/2.0371607jes
      [47]
      Y.H. Sun, R.C. Wang, C.Q. Peng, and Y. Feng, Effects of Sn and Y on the microstructure, texture, and mechanical properties of as-extruded Mg–5Li–3Al–2Zn alloy, Mater. Sci. Eng. A, 733(2018), p. 429. doi: 10.1016/j.msea.2018.05.030
      [48]
      C.L. Cui, L.B. Wu, R.Z. Wu, J.H. Zhang, and M.L. Zhang, Influence of yttrium on microstructure and mechanical properties of as-cast Mg–5Li–3Al–2Zn alloy, J. Alloys Compd., 509(2011), No. 37, p. 9045. doi: 10.1016/j.jallcom.2011.04.030
      [49]
      N.G. Wang, R.C. Wang, Y. Feng, W.H. Xiong, J.C. Zhang, and M. Deng, Discharge and corrosion behaviour of Mg–Li–Al–Ce–Y–Zn alloy as the anode for Mg-air battery, Corros. Sci., 112(2016), p. 13. doi: 10.1016/j.corsci.2016.07.002
      [50]
      C.Y. Zhao, X.H. Chen, F.S. Pan, S.Y. Gao, D. Zhao, and X.F. Liu, Effect of Sn content on strain hardening behavior of as-extruded Mg–Sn alloys, Mater. Sci. Eng. A, 713(2018), p. 244. doi: 10.1016/j.msea.2017.12.074
      [51]
      Q.H. Wang, Y.Q. Shen, B. Jiang, A.T. Tang, Y.F. Chai, J.F. Song, T.H. Yang, G.S. Huang, and F.S. Pan, A good balance between ductility and stretch formability of dilute Mg–Sn–Y sheet at room temperature, Mater. Sci. Eng. A, 736(2018), p. 404. doi: 10.1016/j.msea.2018.09.011
      [52]
      Q.H. Wang, B. Jiang, A.T. Tang, C. He, D.F. Zhang, J.F. Song, T.H. Yang, G.S. Huang, and F.S. Pan, Formation of the elliptical texture and its effect on the mechanical properties and stretch formability of dilute Mg–Sn–Y sheet by Zn addition, Mater. Sci. Eng. A, 746(2019), p. 259. doi: 10.1016/j.msea.2019.01.040
      [53]
      H.D. Zhao, G.W. Qin, Y.P. Ren, W.L. Pei, D. Chen, and Y. Guo, Microstructure and tensile properties of as-extruded Mg–Sn–Y alloys, Trans. Nonferrous Met. Soc. China, 20(2010), Suppl. 2, p. s493.
      [54]
      A.D. Sudholz, K. Gusieva, X.B. Chen, B.C. Muddle, M.A. Gibson, and N. Birbilis, Electrochemical behaviour and corrosion of Mg–Y alloys, Corros. Sci., 53(2011), No. 6, p. 2277. doi: 10.1016/j.corsci.2011.03.010
      [55]
      X.B. Liu, D.Y. Shan, Y.W. Song, and E.H. Han, Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy, J. Magnesium Alloys, 5(2017), No. 1, p. 26. doi: 10.1016/j.jma.2016.12.002
      [56]
      M. Liu, P. Schmutz, P.J. Uggowitzer, G.L. Song, and A. Atrens, The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys, Corros. Sci., 52(2010), No. 11, p. 3687. doi: 10.1016/j.corsci.2010.07.019
      [57]
      H.D. Zhao, G.W. Qin, Y.P. Ren, W.L. Pei, D. Chen, and Y. Guo, The maximum solubility of Y in α-Mg and composition ranges of Mg24Y5-x and Mg2Y1-x intermetallic phases in Mg–Y binary system, J. Alloys Compd., 509(2011), No. 3, p. 627. doi: 10.1016/j.jallcom.2010.09.120
      [58]
      J. Xu, B. Jiang, J.F. Song, J.J. He, P. Gao, W.J. Liu, T.H. Yang, G.S. Huang, and F.S. Pan, Unusual texture formation in Mg–3Al–1Zn alloy sheets processed by slope extrusion, Mater. Sci. Eng. A, 732(2018), p. 1. doi: 10.1016/j.msea.2018.06.100
      [59]
      Q.H. Wang, J.F. Song, B. Jiang, A.T. Tang, Y.F. Chai, T.H. Yang, G.S. Huang, and F.S. Pan, An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion, Mater. Sci. Eng. A, 720(2018), p. 85. doi: 10.1016/j.msea.2018.02.055
      [60]
      Z.Q. Zhang, X. Liu, Z.K. Wang, Q.C. Le, W.Y. Hu, L. Bao, and J.Z. Cui, Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys, Mater. Des., 88(2015), p. 915. doi: 10.1016/j.matdes.2015.09.087
      [61]
      M.X. Cheng, J.H. Chen, H.G. Yan, B. Su, Z.H. Yu, W.J. Xia, and X.L. Gong, Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg–5Zn based alloy system, J. Alloys Compd., 691(2017), p. 95. doi: 10.1016/j.jallcom.2016.08.164
      [62]
      H.B. Yang, L. Wu, B. Jiang, W.J. Liu, H.M. Xie, J.F. Song, G.S. Huang, D.F. Zhang, and F.S. Pan, Effect of microstructure on the corrosion behavior of as-cast and extruded Mg–Sn–Y alloys, J. Electrochem. Soc., 167(2020), No. 12, art. No. 121503. doi: 10.1149/1945-7111/abab27
      [63]
      H.B. Yang, B. Lei, L. Wu, B. Jiang, W.J. Liu, Q. Yang, J.F. Song, G.S. Huang, D.F. Zhang, and F.S. Pan, Effects of texture and discharge products on the discharge performance of Mg anodes for Mg air batteries, J. Electrochem. Soc., 167(2020), No. 13, art. No. 130528. doi: 10.1149/1945-7111/abbb0b
      [64]
      H.B. Yang, L. Wu, B. Jiang, B. Lei, W.J. Liu, J.F. Song, G.S. Huang, D.F. Zhang, and F.S. Pan, Effects of grain size on the corrosion and discharge behaviors of Mg–Y binary alloys for Mg-air batteries, J. Electrochem. Soc., 167(2020), No. 13, art. No. 130515. doi: 10.1149/1945-7111/abb7dd
      [65]
      H.B. Yang, L. Wu, B. Jiang, W.J. Liu, J.F. Song, G.S. Huang, D.F. Zhang, and F.S. Pan, Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg–Li alloys for primary Mg-air batteries, J. Mater. Sci. Technol., 62(2021), p. 128. doi: 10.1016/j.jmst.2020.05.067
      [66]
      H.B. Yang, L. Wu, B. Jiang, B. Lei, W.J. Liu, J.F. Song, A. Atrens, G.S. Huang, D.F. Zhang, and F.S. Pan, Enhancement of corrosion resistance and discharge performance of Mg–5Li–3Al–1Zn sheet for Mg-air battery via rolling, J. Electrochem. Soc., 167(2020), No. 11, art. No. 110529. doi: 10.1149/1945-7111/aba339
      [67]
      X.R. Chen, Q.Y. Liao, Q.C. Le, Q. Zou, H.N. Wang, and A. Atrens, The influence of samarium (Sm) on the discharge and electrochemical behaviors of the magnesium alloy AZ80 as an anode for the Mg-air battery, Electrochim. Acta, 348(2020), art. No. 136315. doi: 10.1016/j.electacta.2020.136315
      [68]
      X.R. Chen, S.C. Ning, Q.C. Le, H.N. Wang, Q. Zou, R.Z. Guo, J. Hou, Y.H. Jia, A. Atrens, and F.X. Yu, Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries, J. Mater. Sci. Technol., 38(2020), p. 47. doi: 10.1016/j.jmst.2019.07.043

    Catalog


    • /

      返回文章
      返回