Cite this article as: |
Qiong Jiang, Wen-qi Zhang, Jia-chang Zhao, Pin-hua Rao, and Jian-feng Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1194-1203. https://doi.org/10.1007/s12613-021-2259-5 |
A facile one-step strategy involving the reaction of antimony chloride with thioacetamide at room temperature is successfully developed for the synthesis of strongly coupled amorphous Sb2S3 spheres and carbon nanotubes (CNTs). Benefiting from the unique amorphous structure and its strongly coupled effect with the conductive network of CNTs, this hybrid electrode (Sb2S3@CNTs) exhibits remarkable sodium and lithium storage properties with high capacity, good cyclability, and prominent rate capability. For sodium storage, a high capacity of 814 mAh·g−1 at 50 mA·g−1 is delivered by the electrode, and a capacity of 732 mAh·g−1 can still be obtained after 110 cycles. Even up to 2000 mA·g−1, a specific capacity of 584 mAh·g−1 can be achieved. For lithium storage, the electrode exhibits high capacities of 1136 and 704 mAh·g−1 at 100 and 2000 mA·g−1, respectively. Moreover, the cell holds a capacity of 1104 mAh·g−1 under 100 mA·g−1 over 110 cycles. Simple preparation and remarkable electrochemical properties make the Sb2S3@CNTs electrode a promising anode for both sodium-ion (SIBs) and lithium-ion batteries (LIBs).
[1] |
B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334(2011), No. 6058, p. 928. doi: 10.1126/science.1212741
|
[2] |
J. Liu, J.G. Zhang, Z.G. Yang, J.P. Lemmon, C. Imhoff, G.L. Graff, L.Y. Li, J.Z. Hu, C.M. Wang, J. Xiao, G. Xia, V.V. Viswanathan, S. Baskaran, V. Sprenkle, X.L. Li, Y.Y. Shao, and B. Schwenzer, Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid, Adv. Funct. Mater., 23(2013), No. 8, p. 929. doi: 10.1002/adfm.201200690
|
[3] |
S.G. He, S.F. Wang, H.D. Chen, X.H. Hou, and Z.P. Shao, A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries, J. Mater. Chem. A, 8(2020), No. 5, p. 2571. doi: 10.1039/C9TA12660K
|
[4] |
H.D. Chen, X.H. Hou, F.M. Chen, S.F. Wang, B. Wu, Q. Ru, H.Q. Qin, and Y.C. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature, Carbon, 130(2018), p. 433. doi: 10.1016/j.carbon.2018.01.021
|
[5] |
H.L. Pan, Y.S. Hu, and L.Q. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 6(2013), No. 8, p. 2338. doi: 10.1039/c3ee40847g
|
[6] |
X.Y. Wang, S.F. Wang, K.X. Shen, S.G. He, X.H. Hou, and F.M. Chen, Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries, J. Mater. Chem. A, 8(2020), No. 7, p. 4007. doi: 10.1039/C9TA11246D
|
[7] |
S.W. Kim, D.H. Seo, X.H. Ma, G. Ceder, and K. Kang, Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2(2012), No. 7, p. 710. doi: 10.1002/aenm.201200026
|
[8] |
J.F. Mao, T.F. Zhou, Y. Zheng, H. Gao, H.K. Liu, and Z.P. Guo, Two-dimensional nanostructures for sodium-ion battery anodes, J. Mater. Chem. A, 6(2018), No. 8, p. 3284. doi: 10.1039/C7TA10500B
|
[9] |
P. Ge and M. Fouletier, Electrochemical intercalation of sodium in graphite, Solid State Ionics, 28-30(1988), p. 1172. doi: 10.1016/0167-2738(88)90351-7
|
[10] |
Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88. doi: 10.1007/s12613-018-1550-6
|
[11] |
D.A. Stevens and J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries, J. Electrochem. Soc., 147(2000), No. 4, p. 1271. doi: 10.1149/1.1393348
|
[12] |
A.S. Hameed, M.V. Reddy, J.L.T. Chen, B.V.R. Chowdari, and J.J. Vittal, RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries, ACS Sustainable Chem. Eng., 4(2016), No. 5, p. 2479. doi: 10.1021/acssuschemeng.5b01211
|
[13] |
J.F. Qian, Y. Chen, L. Wu, Y.L. Cao, X.P. Ai, and H.X. Yang, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries, Chem. Commun., 48(2012), No. 56, p. 7070. doi: 10.1039/c2cc32730a
|
[14] |
A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism, J. Am. Chem. Soc., 134(2012), No. 51, p. 20805. doi: 10.1021/ja310347x
|
[15] |
Y.H. Liu, Y.H. Xu, Y.J. Zhu, J.N. Culver, C.A. Lundgren, K. Xu, and C.S. Wang, Tin-coated viral nanoforests as sodium-ion battery anodes, ACS Nano, 7(2013), No. 4, p. 3627. doi: 10.1021/nn400601y
|
[16] |
H.L. Zhu, Z. Jia, Y.C. Chen, N. Weadock, J.Y. Wan, O. Vaaland, X.G. Han, T. Li, and L.B. Hu, Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir, Nano Lett., 13(2013), No. 7, p. 3093. doi: 10.1021/nl400998t
|
[17] |
B. Luo, T.F. Qiu, D.L. Ye, L.Z. Wang, and L.J. Zhi, Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage, Nano Energy, 22(2016), p. 232. doi: 10.1016/j.nanoen.2016.02.024
|
[18] |
Z. Hu, L.X. Wang, K. Zhang, J.B. Wang, F.Y. Cheng, Z.L. Tao, and J. Chen, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries, Angew. Chem. Int. Edit., 53(2014), No. 47, p. 12794. doi: 10.1002/anie.201407898
|
[19] |
J.J. Wang, C. Luo, J.F. Mao, Y.J. Zhu, X.L. Fan, T. Gao, A.C. Mignerey, and C.S. Wang, Solid-state fabrication of SnS2/C nanospheres for high-performance sodium ion battery anode, ACS Appl. Mater. Interfaces, 7(2015), No. 21, p. 11476. doi: 10.1021/acsami.5b02413
|
[20] |
X.H. Xiong, G.H. Wang, Y.W. Lin, Y. Wang, X. Ou, F.H. Zheng, C.H. Yang, J.H. Wang, and M.L. Liu, Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets, ACS Nano, 10(2016), No. 12, p. 10953. doi: 10.1021/acsnano.6b05653
|
[21] |
D.Y.W. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, and O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nat. Commun., 4(2013), art. No. 2922. doi: 10.1038/ncomms3922
|
[22] |
Y.J. Zhu, Y. Wen, X.L. Fan, T. Gao, F.D. Han, C. Luo, S.C. Liou, and C.S. Wang, Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries, ACS Nano, 9(2015), No. 3, p. 3254. doi: 10.1021/acsnano.5b00376
|
[23] |
J.F. Mao, X.L. Fan, C. Luo, and C.S. Wang, Building self-healing alloy architecture for stable sodium-ion battery anodes: A case study of tin anode materials, ACS Appl. Mater. Interfaces, 8(2016), No. 11, p. 7147. doi: 10.1021/acsami.6b00641
|
[24] |
X.L. Fan, J.F. Mao, Y.J. Zhu, C. Luo, L.M. Suo, T. Gao, F.D. Han, S.C. Liou, and C.S. Wang, Superior stable self-healing SnP3 anode for sodium-ion batteries, Adv. Energy Mater., 5(2015), No. 18, art. No. 1500174. doi: 10.1002/aenm.201500174
|
[25] |
P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, and D.Y.W. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@Graphene for a superior lithium battery anode, Chem. Mater., 24(2012), No. 24, p. 4750. doi: 10.1021/cm3031818
|
[26] |
C.M. Park, Y. Hwa, N.E. Sung, and H.J. Sohn, Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries, J. Mater. Chem., 20(2010), No. 6, p. 1097. doi: 10.1039/B918220A
|
[27] |
D.Y.W. Yu, H.E. Hoster, and S.K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries, Sci. Rep., 4(2014), art. No. 4562. doi: 10.1038/srep04562
|
[28] |
H.S. Hou, M.J. Jing, Z.D. Huang, Y.C. Yang, Y. Zhang, J. Chen, Z.B. Wu, and X.B. Ji, One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 34, p. 19362. doi: 10.1021/acsami.5b05509
|
[29] |
Y.Y. Zhu, P. Nie, L.F. Shen, S.Y. Dong, Q. Sheng, H.S. Li, H.F. Luo, and X.G. Zhang, High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries, Nanoscale, 7(2015), No. 7, p. 3309. doi: 10.1039/C4NR05242K
|
[30] |
Z. Yi, Q.G. Han, Y. Cheng, Y.M. Wu, and L.M. Wang, Facile synthesis of symmetric bundle-like Sb2S3 micron-structures and their application in lithium-ion battery anodes, Chem. Commun., 52(2016), No. 49, p. 7691. doi: 10.1039/C6CC03176E
|
[31] |
Y.B. Zhao and A. Manthiram, Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries, Chem. Commun., 51(2015), No. 67, p. 13205. doi: 10.1039/C5CC03825A
|
[32] |
B.H. Juárez, S. Rubio, J. Sánchez-Dehesa, and C. López, Antimony trisulfide inverted opals: Growth, characterization, and photonic properties, Adv. Mater., 14(2002), No. 20, p. 1486. doi: 10.1002/1521-4095(20021016)14:20<1486::AID-ADMA1486>3.0.CO;2-P
|
[33] |
J.F. Qian, X.Y. Wu, Y.L. Cao, X.P. Ai, and H.X. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries, Angew. Chem. Int. Edit., 52(2013), No. 17, p. 4633. doi: 10.1002/anie.201209689
|
[34] |
S.H. Dong, C.X. Li, X.L. Ge, Z.Q. Li, X.G. Miao, and L.W. Yin, ZnS–Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries, ACS Nano, 11(2017), No. 6, p. 6474. doi: 10.1021/acsnano.7b03321
|
[35] |
F.X. Xie, L. Zhang, Q.F. Gu, D.L. Chao, M. Jaroniec, and S.Z. Qiao, Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density, Nano Energy, 60(2019), p. 591. doi: 10.1016/j.nanoen.2019.04.008
|
[36] |
W.P. Sun, X.H. Rui, J.X. Zhu, L.H. Yu, Y. Zhang, Z.C. Xu, S. Madhavi, and Q.Y. Yan, Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage, J. Power Sources, 274(2015), p. 755. doi: 10.1016/j.jpowsour.2014.10.105
|
[37] |
W.H. Yin, W.W. Chai, K. Wang, W.K. Ye, Y.C. Rui, and B.H.J. Tang, A highly Meso@Microporous carbon-supported Antimony sulfide nanoparticles coated by conductive polymer for high-performance lithium and sodium ion batteries, Electrochim. Acta, 321(2019), art. No. 134699. doi: 10.1016/j.electacta.2019.134699
|
[38] |
S. Wang, S. Yuan, Y.B. Yin, Y.H. Zhu, X.B. Zhang, and J.M. Yan, Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries, Part. Part. Syst. Charact., 33(2016), No. 8, p. 493. doi: 10.1002/ppsc.201500227
|
[39] |
J.F. Ni, Y. Zhao, T.T. Liu, H.H. Zheng, L.J. Gao, C.L. Yan, and L. Li, Strongly coupled Bi2S3@CNT hybrids for robust lithium storage, Adv. Energy Mater., 4(2014), No. 16, art. No. 1400798. doi: 10.1002/aenm.201400798
|
[40] |
S.M. Hwang, J. Kim, Y. Kim, and Y. Kim, Na-ion storage performance of amorphous Sb2S3 nanoparticles: Anode for Na-ion batteries and seawater flow batteries, J. Mater. Chem. A, 4(2016), No. 46, p. 17946. doi: 10.1039/C6TA07838A
|